Artemisinins: mechanisms of action and potential for resistance

Sanjev Krishna a, *, Anne-Catrin Uhlemann a, Richard K. Haynes b

a Department of Cellular and Molecular Medicine, Infectious Diseases, St. George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

Artemisinins form the most important class of antimalarial currently available, particularly because they are effective against parasites resistant to almost all the other classes. Their mechanism of action is controversial. Some aspects of this controversy are reviewed here. Whilst there is no clinical resistance yet identified to artemisinins, the potential to examine the relationship between polymorphisms in PfATP6 (a target of artemisinins) in multidrug resistant isolates of Plasmodium falciparum, is also discussed.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Plasmodium falciparum; Malaria; Artemisinin; Endoperoxides

1. Introduction

Some of our most important medicines come from plants, including the only two anti-malarial classes used to treat severe malaria; the cinchona alkaloids and artemisinins (Dobson, 1998). The cinchona alkaloids, like quinine, are extracted from the bark of trees originally grown in Peru and have a history that goes back more than 350 years (Greenwood, 1992). Artemisinin is extracted from a herb, qinghao, which in being documented in traditional Chinese pharmacopoeia for treatment of fevers over two millennia, has a longer history of use. In 1967, the Government of the People’s Republic of China began a programme to identify antimalarial principles in plants used in traditional Chinese medicine (Klayman, 1985). In 1971 workers at the Pharmaceutical Institute of the Academy of Traditional Chinese Medicine succeeded in showing that extracts of qinghao killed Plasmodium berghei in mice (Qinghaosu and C-ORGo., 1979; Hien and White, 1993). By 1972 they had identified the active ingredient—qinghaosu (“the active principle from qinghao”)—which is now called artemisinin (Klayman, 1985). Artemisinin is still obtained by extraction from qinghao (Artemisia annua—sweet Annie, sweet wormwood), a genus of plant that also gives us absinthe (Klayman et al., 1984). Once the structure of artemisinin was solved in 1977 (Qinghaosu and C-ORGo., 1977), modifications were introduced to improve solubility in both oil and water. These derivatives (Fig. 1) now comprise our most important class of antimalarial and are having a profound impact on modern antimalarial treatment regimens.

2. Why artemisinins are important antimalarials

Artemisinins are our most important class of anti-malarial for reasons that include the following.

2.1. Pharmacokinetic properties

Artemisinins can be administered by several routes. The water soluble derivative artesunate can be given by the oral, intramuscular, intravenous, and even intrarectal routes (Krisha et al., 2001; Hien et al., 1991; Hien, 1994). These routes of administration have been studied in recent years...
for their efficacy, toxicity and pharmacokinetics. The most clinically useful artemisinins (2-5) are metabolised to dihydroartemisinin (see Table 1 for some activities). For parent compounds such as artesunate, which have very short elimination half-times (<10 min), the metabolite is the more important in exerting antimalarial effects because the elimination half-time is somewhat longer (~1 h). The relatively short half-life for elimination of dihydroartemisinin confers the theoretical advantage that selection for drug-resistant parasites is less likely. A potential disadvantage, however, may be a higher associated risk of recrudescence when these drugs are used in monotherapeutic regimens. Oral artesunate is rapidly absorbed in uncomplicated malaria, with good bioavailability (Alin et al., 1996). From available data, it is unlikely that disease severity affects clearance parameters of artemisinins significantly (Krishna et al., 2001; Nealon et al., 2002; Newton et al., 2000). However, absorption may be altered by many variables including formulation of artemisinin, oil-solubility and route of administration. For example, in severe malaria, artemether absorption may be relatively slow by the intramuscular route when compared with intramuscular artesunate (Nealon et al., 2002; Murphy et al., 1997). Absorption is also quite variable (9-20-fold variation in AUC depending on dose) when artesunate is used by the intrarectal route, for example, in children who cannot take anti-malarials by mouth (Krishna et al., 2001). The use of rectal artesunate may be life-saving when there is anticipated delay between the onset of symptoms and management in hospital. In these circumstances (moderate malaria) the rectal administration of artesunate is effectively parasiticidal despite variable absorption kinetics (Krishna et al., 2001).

Artemisinins are one of the few classes of drug useful to treat severe malaria that is resistant to chloroquine. The only other antimalarial that can be used for this purpose is quinine, which has a relatively narrow therapeutic index and can cause hyperinsulinaemia and associated risk of hypoglycaemia (White et al., 1983; Agbenyega et al., 2000). This complication is not observed with artesunate therapy, which seems to be remarkably free of major toxicity. Artesunate bioavailability is acceptable even when it is given by the intramuscular route in severe malaria and there is no associated local toxicity, another complication of intramuscular quinine (Hien, 1994; Nealon et al., 2002; Kamchonwongpaisan et al., 1997; Nonprasert et al., 2002).

2.2. Pharmacodynamic properties

Artemisinins act more rapidly than other types of antimalarial, both in killing parasites and in inhibiting their major metabolic processes, such as glycolysis, nucleic acid and protein synthesis (ter Kuile et al., 1993). Artemisinins also attack the broadest age range of parasites, from the tiniest rings that have recently invaded erythrocytes to more mature stages of parasites such as developing trophozoites and schizonts (ter Kuile et al., 1993; Angus et al., 1997). Their relatively broad stage-specificity of action extends to an ability to impede the development of gametocytes (Price et al., 1996). This contrasts with some other widely used antimalarial classes such as the 4-aminoquinolines or antifolates, which do not have the potential to interrupt transmission of malaria. These favourable properties also have some correlates when artemisinins are used to treat patients. For example, removal of ring stage parasites from within red cells can be inferred in patients who are treated with artemisinins, but not other antimalarials (Angus et al., 1997). This property reduces circulating parasitaemia more rapidly than other antimalarials, sometimes by up to 2-3 log orders of magnitude (White, 1999). In areas of low malaria transmission, gametocytocidal activity may reduce transmission and contribute to malaria-control programmes (Price et al., 1996), although similar benefits have not been shown when artemisinins are used in areas of higher malaria transmission (von Seidlein et al., 2003). Furthermore, artemisinins inhibit the ability of

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>D-6</th>
<th>D-6</th>
<th>W-2</th>
<th>W-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisin (1)</td>
<td>4.61</td>
<td>2.53</td>
<td>0.55</td>
<td>1.21</td>
</tr>
<tr>
<td>DHA (2)</td>
<td>1.79</td>
<td>0.11</td>
<td>1.83</td>
<td>0.04</td>
</tr>
<tr>
<td>Arteether (3)</td>
<td>3.34</td>
<td>4.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arteether (4)</td>
<td>2.54</td>
<td>0.87</td>
<td>4.07</td>
<td>0.16</td>
</tr>
<tr>
<td>Artesunate (5)</td>
<td>1.66</td>
<td>0.58</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>D-Dihydroartesinin (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Qing hao or artemisin (1) and derivatives dihydroartemisinin (2); arteether (3), arteether (4); and artesunate (5). The numbering scheme is that used by chemical abstracts. Artemisin is a sesquiterpene—a natural product containing 15 carbon atoms, which like all terpenes, is biosynthesized in A. annua from mevalonic acid via dimethylallyl and isopentenyl pyrophosphates.
maturing parasites to make the red cell surface sticky (cytoadherence to endothelial cells) much more effectively than most other antimalarials (Udomsangpetch et al., 1996). As cytoadherence is a recognised virulence determinant, inhibiting it more efficiently may confer a comparative advantage over other classes of drug.

2.5. Activity against multidrug resistant parasites

Malarial parasites become resistant to different antimalarials with frequencies that vary depending upon the class of antimalarial. For example, resistance to atovaquone which arose because of a mutation in the target mitochondrial enzyme cytochrome b5 is not associated with a relatively high frequency that affects about 30% of individuals treated with atovaquone monotherapy (Korszynszyk et al., 2000; Winstanley et al., 2002). In contrast, it took 15 years for aminochinolines to begin losing efficacy, and quinine is still useful despite more than 350 years of continuous use. Parasites in some parts of the world are resistant to separate drug classes such as the antifolates and 4-aminoquinolines. Also, some parasites may have an increased capacity to develop resistance compared with others (Rathod et al., 1997). The phenomenon of drug resistance is most common in southeast Asia, and has been studied intensively on the borders of Thailand, where mefloquine-resistant parasites emerged after only a few years of monotherapy (Nosten et al., 1991). When artemisinins are combined with drugs that no longer work well enough to cure >95% of patients, then failing efficacy can be restored in some areas and for particular combinations. Artemisin added to mefloquine consistently cures >95% of patients, where mefloquine alone only worked for about 50–60% of cases (Nosten et al., 1991; Nosten et al., 2000).

These findings (and the other described potential benefits) have given rise to the idea that effective treatment of patients should combine antimalarials, and that such combinations should always include an artemisinin derivative (White, 1999a,b; White, 1998). What advantages does using an artemisinin confer? First, it does raise the cure rates when combined with antimalarials that are taken from different classes (Offlar and Taylor, 2004). However, a key determinant of cure rates is the underlying efficacy of the partner to an artemisinin, when it is used as monotherapy in a particular geographic area. For example, amodiaquine given with artemether can cure >90% or ~70% of individuals, depending on where it is used (Adjouk et al., 2002). A significant contribution to this geographic variation will be parasites’ susceptibility to artemisinin (alleged to other factors such as age-related antimalarial immunity) (Adjouk et al., 2004).

Artemisinin containing combination therapies will undoubtedly increase in their usage and perhaps in their public health importance with time as resistance becomes more widespread to a wider range of single anti-malarial drugs. Their value has been discussed in greater detail in a recent review (Kremesner and Krishna, 2004).

Lack of cure after mefloquine treatment of patients in Thailand has been linked to increased copy number of pfmdr1 in resistant parasites (Cowman et al., 1994; Price et al., 1999; Price et al., 2004). Interestingly, there is also an association with increased IC50 for artesunate or artemisinin and increase in pfmdr1 copy number in these isolates. However, this increase in IC50 detected by in vitro assays on parasites in culture does not translate to impairment in clinical efficacy when artemisinins are used, because the increased IC50 is still within a narrow (and therapeutic) range. A new amino acid polymorphism in a receptor for artemisinins (PfATP6, see below) has been identified in parasites in the region, which contains some of the most highly drug resistance parasites worldwide. However, there is no association between this polymorphism and IC50 values to artemisinins (Price et al., 2004).

3. How may artemisinins work?

Artemisinins act via mechanisms that are distinct from other antimalarial classes, including those that inhibit well defined targets such as enzymes of folate biosynthesis, the DOXPH reductase pathway or the cytochrome electron transport system. The peroxide within the 1,2,4-trioxane system of artemisinins is essential for antimalarial activity. Thus, artemisinins lacking a peroxidic oxygen atom such as the desoxy compounds 6 and 7 (Fig. 2), (Avery et al., 1993) and the 1-carba analogue 8 in which one of the peroxide oxygen atoms is replaced by carbon (Ye and Wu, 1989; Ye et al., 1991) are also devoid of activity. However, 10-deoxo-10-dihydroartemisinin derivative 9 in which the peroxide is intact retains antimalarial activity, and in fact is more active than artemisinin against the malaria parasite in vitro (Ye et al., 1991; Jung et al., 1990). The peroxide structure, has therefore, become a focus for considerable chemical analysis aimed at trying to understand how artemisinins work.

3.1. Peroxides as “prodrugs”—putative action via reactive oxygen species

Simple peroxides such as tert-butyl hydroperoxide rapidly kill intraerythrocytic malarial parasites (Plasmodium vinckei) in mice and induce haemolysis, whereas there is no effect on erythrocytes in unparasitized mice (Clark et al., 1984). As peroxides are generally reactive entities, a link has been drawn between the mechanism of action of artemisinins and the generation of reactive oxygen species (ROS) —hydroxyl, alkoxyl, (protonated) superoxide or peroxyl radicals—within the parasitized erythrocyte. Recent studies suggest that haemolysis of infected erythrocytes caused by solutes such as sorbitol entering through novel permeation pathways may arise through oxidant stress of proteins also present in uninfected erythrocytes, and can be induced by exposure to tert-butyl hydroperoxide (Huber et al., 2002). Formation of ROS can be enhanced through the Fe2+—dependent Fenton
process, although intracellular antioxidant reserves (such as glutathione) can still be depleted directly by tert-butyl hydroperoxide, which will generate oxidized glutathione (GSSG) according to a well-established heterolytic process even without the presence of free Fe²⁺ (Halliwell and Gutteridge, 1999a).

Conversely, desferrioxamine inhibits the parasiticidal activity of peroxides, presumably by scavenging the intracellular Fe²⁺ required for the Fenton process through its redox equilibration with Fe³⁺ and formation of an extremely stable Fe³⁺ complex. In line with the antiparasitic activity of tert-butyl hydroperoxide, other structurally simple peroxides were also found to possess moderate activities in vitro but were inactive in vivo (Vennerstrøm et al., 1989).

The general interpretation for parasite death and hemolysis based on these observations is that these are mediated by reactive oxygen species whose presence, greatly enhanced by the exogenous peroxide, eventually overwhelms the parasite anti-oxidant defense systems (Hunt and Stocker, 1990). A similar mode of action has been assumed for the artemisins through its redox equilibration with Fe³⁺ and formation of an extremely stable Fe³⁺ complex. In line with the antiparasitic activity of tert-butyl hydroperoxide, other structurally simple peroxides were also found to possess moderate activities in vitro but were inactive in vivo (Vennerstrøm et al., 1989).

The general interpretation for parasite death and hemolysis based on these observations is that these are mediated by reactive oxygen species whose presence, greatly enhanced by the exogenous peroxide, eventually overwhelms the parasite anti-oxidant defense systems (Hunt and Stocker, 1990). A similar mode of action has been assumed for the artemisins through its redox equilibration with Fe³⁺ and formation of an extremely stable Fe³⁺ complex.

3.2. Artemisinins as ‘prodrugs’—activation via C-centred radicals or formation of stable, antimalarial-active end products

Many workers consider that the artemisinins per se are not antimalarial, but rather act as ‘prodrugs’, requiring generation of antimalarial-active intermediates after encounter with ferrous iron. Translating the idea that Fe²⁺ is important in activating peroxides to artemisinin activation raises the question as to where Fe²⁺ is found in an infected erythrocyte. An obvious source of Fe²⁺ was considered to be the food vacuole of the parasite, where digestion of haemoglobin takes place and free iron is detoxified by deposition in haemoglobin, an insoluble dimer of haem which forms hydrogen-bonded aggregates.

Accordingly, a large amount of work has been carried out on iron-mediated decomposition of artemisinins, and of totally synthetic trioxane analogues, either by using ‘free’ Fe²⁺, or haem-Fe²⁺. The purported aim has been to seek to demonstrate a connection between the structures of putative unstable intermediates such as carbon-centred radicals, or of stable end products, formed from these intermediates and antimalarial activity. The reactive intermediates are held to react with ‘sensitive’ or ‘vital’ biomolecules in the parasite, or the end products themselves are claimed to possess antimalarial activity in their own right. In other words, the artemisinins are considered to exert parasiticidal activity by an apparently ‘random process’, as opposed to high affinity binding of the intact artemisinin to an active site, prior to any ‘activation’.

3.2.1. Activation by ‘free’ ferrous iron

In considering ‘free’ Fe²⁺- decomposition of artemisinins first, we note that reductive cleavage of a peroxides by ferrous iron—the Fenton reaction—to generate O-centred, or alkoxyl radicals, and then C-centred radicals, and finally neutral products—is well understood, having been thoroughly examined before the advent of the artemisinins (for reviews see: Davies, 1961; Saito and Nittala, 1983; Sosnovsky and Rawlinson, 1971a,b; Matsugo and Saito, 1992a; Clennan and Foote, 1992). The detailed course of the decomposition of artemisinin and synthetic trioxane analogues with Fe²⁺ has been subject to an intensive examination and large amount of discussion, some of it much too speculative, in the literature (Posner and Oh, 1992; Posner et al., 1995; O’Neill et al., 2001; Hindley et al., 2002; Haynes and Vonwiller, 1996a; Wu et al., 1998; Li and Wu, 2003). The essential aspects in the case of artemisinin are illustrated in Fig. 3. Cleavage of the peroxide generates two different alkoxyl radicals, labelled the ‘O-2’ and ‘O-1’ radicals. The radical centre in the former is adjacent to an oxygen atom, and so is predisposed to undergo ‘o-cleavage’ (cleavage of the C₃=C₄ bond) to generate the ‘secoc’-C₄ radical 10. This decomposes via extrusion of Fe²⁺ to give the furan 12, which has no antimalarial activity (Wu et al., 1998; Li and Wu, 2003).

The O-1 radical abstracts the proximate α-disposed hydrogen atom from C-4 to generate the C-4 radical 11. This is converted into the 4-hydroxy-desoxoartemisinin 14, which also has no antimalarial activity, via the unstable epoxide 13. Although this last compound was claimed to be a ‘potent alkylating agent’ and ‘cytotoxic’, and also to possess the remarkable ability to generate antimalarial hypervalent iron species (Posner et al., 1995; Posner and O’Neill, 2004), these claims have been refuted (Wu et al., 1998; Robert et al., 2002).

It is important to note that the overall conversion of artemisinin into products 12 and 14 does not involve any overall change in oxidation states of iron or of artemisinin, that is, these are isomerization reactions catalysed by Fe²⁺ which
Fig. 3. Pathways proposed for activation of artemisinin by ferrous iron leading to the seco C-4 radical 10 and C-4 radical 11, and the end-products 12 and 14.

Neither 12 nor 14 possesses antimalarial activity, and thus antimalarial activity is claimed to reside in the radicals 10 and 11 by their reacting with 'sensitive biomolecules' in the parasite.

The C-centred radicals have been held to be important for antimalarial activity by their reacting with 'sensitive biomolecules'. Both types of radicals can be intercepted with spin-trapping agents, which provide longer-lived radicals capable of detection by ESR spectroscopy (O’Neill et al., 2001; Wu et al., 1998; Butler et al., 1998). When the Fe$^{2+}$-mediated decomposition of artemisinin or other artemisinin derivatives is run in the presence of cysteine or glutathione under aqueous conditions, the adducts 15–17 (Fig. 4), among others, are isolated in low yields; these are presumed to arise via entrapment of the C-4 radicals in rather complicated pathways held to involve ferrous-cysteine complexes in the case of cysteine (Wu et al., 1999; Wang and Wu, 2000; Wu et al., 2001; Wu, 2002; Wu et al., 2003). However, the trapping of thiols appears to be quite general—in the presence of 2-naphthalenethiol, the adduct 18 (Fig. 4) may be isolated (Haynes et al., 2004). Unfortunately, there is no evidence that discrete radicals are involved in thiol entrapment, and the reactions are reminiscent of those examined much earlier involving ligand exchange from a redox-active metal (Fe$^{2+}$/Fe$^{3+}$ and/or Cu$^{+}$/Cu$^{2+}$) to a cationic centre generated by oxidation of a C-centred radical proximate to the metal (Porter, 1992; Matsugo and Saito, 1992b).

3.2.2. Activation by haem ferrous iron

In turning to 'activation' of artemisinin by haem, we note that from the early trophozoite stage, the malaria parasite catabolises haemoglobin as a source of amino acids in an acidic, oxygen-rich lysosome-like digestive vacuole (Sullivan, 2002).

The catabolism releases ferricprotoporphyrin IX (haem), and the haem undergoes a non-enzymatic dimerization to form haemochrom, the insoluble, highly crystalline malaria
pigment (Pagola et al., 2000). Virtually all of the haem is converted into haemozoin, and very little is degraded by other pathways (Egan et al., 2002). Of the total iron present in *Plasmodium falciparum* trophozoites, approximately 92% is located within the food vacuole, and of this, approximately 88% is in the form of haemozoin. Indeed, haemozoin is the only detectable iron species in trophozoites, and the haemozoin loading in the food vacuole is very high. The progenitor of haemozoin, namely haem, has been studied as an ‘activator’ of the artemisinins. \(^{14}\text{C}\)-Artemisinin was found to interact with haem, either within the parasite, or in vitro in a medium containing ferrisprotoporphyrin IX chloride at pH 7.5–7.8 (Meshnick et al., 1991). Convincing evidence for formation of a haem-artemisinin adduct was presented. It was established that haem has to be in the ferrous state in order to react with artemisinin, although the claim (Zhang et al., 1992) that the ferrous haem could induce catalytic decomposition of artemisinin could not be verified (Haynes and Vonwiller, 1996b). The haem-artemisinin adduct was found not to be toxic to the malaria parasite. One study also found that a substantial amount of \(^{14}\text{C}\)-artemisinin incubated with malaria parasites became associated with the dimer (Hong et al., 1998); the nature of this interaction involving hemozoin has not been examined further.

In chemical studies, a covalent haem-artemisinin adduct was isolated in the high overall yield of 80–85% from reduction of ferrisprotoporphyrin IX dimethyl ester under highly reducing conditions (Robert et al., 2001). However, the relevance to formation of haem–artemisinin adducts in vivo remains to be established. Mass spectra of the adducts isolated from incubation of artemisinin with *Plasmodium*-infected erythrocytes correspond approximately with the sum of molecular weights of the reactants (artemisinin and haem) (Meshnick et al., 1991) but little else is known of their structures. Several pathways that link the Fe\(^{2+}\)-mediated decomposition of artemisinin to alkylation of haem have been proposed (Robert et al., 2002). This type of haem alkylation was proposed to be important for antimalarial activity of the artemisinins in general. The proposal has been used as a basis to rationalize the relationship between antimalarial activity of synthetic trioxanes and stereochemistry of substituents on the periphery of the trioxanes, and to design a hybrid class of putative antimalarials referred to as trioxaquinones.

If indeed the artemisinins function as antimalarials according to the haem activation idea, this requires juxtaposition of several events (Fig. 5):
i. encounter of artemisinin with the reduced (Fe^{2+}) haem in the food vacuole, whose interaction between breakdown of haemoglobin and formation of hemozoin has never been unequivocally demonstrated, and must be transient at best, given the lack of a reducing environment within the food vacuole;

ii. binding of the peroxide to the haem iron atom—in the Fe^{3+} state—in order to induce inner sphere electron transfer;

iii. generation of the seco C-4 radical;

iv. dissociation of the oxygen ligand of the seco C-4 radical from the Fe^{3+} in the haem;

v. escape of the resulting ‘free’ seco C-4 radical from the environment of the ferric haem;

vi. migration and encounter of the free seco C-4 radical with an ‘essential parasite protein’.

The inner sphere electron transfer involves the iron atom being coordinated to the oxygen atom throughout the decomposition process. Therefore, ligand exchange with a putative external ligand (water?) is required to release the radical from the haem (pathway b, Fig. 5) more rapidly than the very fast intramolecular reaction between the radical and the haem. Not surprisingly, it has not proved possible to trap the seco-C4 radical. It is established that dihydroartemisinin derivatives react cleanly with Fe^{2+} in 1:1 acetonitrile-water, even though these are extremely active antimalarials (Fig. 5) (Haynes et al., 2004). Further, it has been shown that 10-deoxo-10-dihydroartemisinin (9), an active antimalarial, is completely decomposed by Fe^{2+} under the foregoing conditions. In other words, there is no correlation with the ability of artemisinin derivatives to react with Fe^{2+} to generate the putative C-centred radicals, and antimalarial activity.

3.3. Problems with the ‘free’ ferrous iron and ferrous haem-activation and reactive intermediates hypotheses

The fitness of the C-centred radicals derived from the artemisinins and synthetic trioxanes as parasiticidal agents must be questioned for the following reasons:

i. These radicals, substantially less reactive than O-centred radicals, react at a diffusion controlled rate with oxygen, and are reduced by thiol. They are normally oxidized by high-valent metal ions, such as Fe^{3+}, to carbocations. The C-centred radicals formed from unsaturated fatty acids and lipids through abstraction of hydrogen atoms by ROS, or from xenobiotics, for example carbon tetrachloride, by reduction or other metabolic pathways, react with oxygen to form peroxy radicals (Halliwell and Gutteridge, 1999b). These initiate chain processes resulting in eventual formation of breakdown products such as malondialdehyde from lipid peroxidation. Further, the environment within a parasitized erythrocyte, with the greatly enhanced recycling of ROS and greatly enhanced levels of lipid peroxidation, is not a reducing one at all. Therefore, to expect that a carbon-centred radical will survive such a hostile environment for it to be ‘cytotoxic’ in its own right, in other words, to migrate from its point of formation to react with ‘sensitive’ or ‘vital’ biomolecules in the parasite, is physically unrealistic.

ii. The C-centred radical hypothesis is difficult to countenance in the face of antimalarial data for secoartemisinin and carbamate analogues of artemisinin (Fig. 6). Whilst compound 22 possesses approximately 10% of the activity of artemisinin, compound 23 is equipotent with artemisinin. Compound 24 possesses approximately the same activity as compound 22. In all cases, cleavage of the peroxide by Fe^{2+} will result in alkoxyl radicals which are no longer constrained to be in the proximity of carbon atoms bearing abstractable hydrogen atoms (cf. Fig. 3) (Avery et al., 1990; Avery et al., 1994). The carba analogues 24 and 25 of artemisinin (1) and 10-deoxo-10-dihydroartemisinin (9) possess approximately 3 and 24% of the antimalarial activity of artemisinin, yet these are clearly capable of generating C-centred radicals (Avery et al., 1996a). Indeed, as the compound 25 reacts cleanly with Fe^{2+} to generate products, which apparently arise via a C-4 radical, the expectation of antimalarial activity is the reverse in fact of what is observed. These splendid examples provide strong argument for the irrelevance of the C-centred radical idea as a basis for antimalarial activity.

iii. It is established that dihydroartemisinin derivatives bearing various amino groups at C-10 react sluggishly with Fe^{2+} in 1:1 acetonitrile-water, even though these are extremely active antimalarials (Fig. 5) (Asawamahasakda et al., 1994). Aside from the difficulty of alkylation of the protein by the radical, it is uncertain if HRP plays any essential role in the dimerization of the haem.
Fig. 6. Totally synthetic 4,5-secoartemisinin derivatives possess antimalarial activity, but are less likely to generate carbon-centred radicals once the peroxide bridge is cleaved. Relative to artemisinin 1 [IC₅₀: 100% W2, D6], compound 22 6% W2, 20% D6; compound 23 75% W2, 108% D6; compound 24 14% W2; 7% D6. Conformational effects in the seco compounds, which will be conformationally more mobile than artemisinin, are likely to influence activity. The carba-analogues 25 and 26 relative to artemisinin 1 [IC₅₀: 100% W2, D6], compound 25 3.8% W2, 2.5% D6; compound 26 16% W2, 32% D6. These data indicate that the presence of the third non-peroxide oxygen atom is required for optimal activity.

ii. There are artemisinin derivatives that are chemically unable to react with haem, but are very potent antimalarials (Haynes et al., 2004). 10-Deoxoartemisinin 9 is an example that is more stable than artemisinin and dihydroartemisinin under aqueous conditions, and therefore, less likely to bind to haem. 10-Deoxoartemisinin does not interfere at all with haemozoin formation, which conclusively shows that inhibition of β-hematin in the haem polymerisation inhibitory activity assay does not relate to antimalarial activity, and that furthermore, binding to F(III)PPIX is unnecessary for antimalarial activity (Haynes et al., 2003). Whilst these in vitro assays do not necessarily represent what is happening in vivo, they do suggest that alternatives should be sought to the idea that artemisinins act by inhibiting haem polymerisation, as 10-deoxoartemisinin cannot react with reduced haem. Also, the Kᵯ for haem–artemisinin interactions is outside of the nanomolar range (IC₅₀ > 10 μM for artemisinin) (Pandey et al., 1999).

iii. We have noted previously that artemisinin derivatives do not inhibit, but rather are potent inducers of, Phase I-metabolizing P-450 (CYP) enzymes, in which the prothetic haem shuttles through the ferrous and ferric states, and hydroxylates the periphery of the artemisinin derivatives on the same side as the peroxide without interfering with it (Haynes, 2001).

iv. There has been an implicit assumption that the target organelle of the artemisinins is the food vacuole. In contrast to the study quoted above, the localisation of artemisinin in living parasites is not associated with the food vacuole (Eckstein-Ludwig et al., 2003), and in one study, only 13–15% of radiolabelled artemisinin is found in the haemozoon fraction after parasites are exposed to this tracer (Asawamahasakda et al., 1994). Artemisinins act against tiny ring stages of parasite development, both in vitro (ter Kuile et al., 1993) and in vivo (Angus et al., 1997). Yet these stages do not contain haemozoon, once again suggesting that the food vacuole is not critical for antimalarial activity of artemisinins.

A fundamental point here is that even if chemical reactions can be shown to occur in vitro, this still requires a demonstration of the relevance of these reactions in vivo. Further, the prodrug hypothesis would require that stable end-products resulting from decomposition of an antimalarial-active peroxide in a laboratory study be demonstrated to possess antimalarial activity. Unfortunately, very little work to this effect has been carried out, and unsupported statements asserting antimalarial activity of this or that ketone, epoxide, or other ‘electrophilic’ product continue to appear.

3.4. Labelling of parasite proteins by artemisinins

A decade ago, Meshnick and colleagues demonstrated that parasite proteins could be labelled and extracted after exposure to radiolabelled artemisinins (arteether and DHA) (Asawamahasakda et al., 1994). Most radiolabel taken up (~60%) was found in an SDS-soluble fraction, and in trophozoite stages of parasite development. Four major protein bands were labelled (25, 50, 65 and >200 kDa), although competition for this labelling with unlabelled artemisinin was not carried out to control for specificity of this interaction. Subsequent identification of one, probably covalently labelled band, has been achieved and the protein found to be the Translationally Controlled Tumour Protein (TCTP) orthologue of mammalian and other cells (Bhisutthibhan et al., 1998). The function of TCTP in parasites is unknown, and the importance of binding of artemisinins to this protein in their mechanism of action has yet to be defined.
4. An alternative hypothesis

4.1. Binding of the intact molecule to an active site

Some time ago, it was proposed that artemisinins may be ‘activated’ for antimalarial activity after complexation, or binding of the intact molecule, into an active site (Haynes and Vonwiller, 1996a; Haynes et al., 1999; Olliaro et al., 2001a,b). One crucial reason for this is that in vitro antimalarial activity is sensitive to steric effects which cannot be accommodated within a carbon centred radical scenario. Replacement of the methyl group at C-3 of artemisinin (1) and 10-deoxodihydro-artemisinin (9) by much larger groups, for example, phenylethyl, and including groups which are held to stabilize radicals, in artemisinin results in diminution in activity (Avery et al., 1996b). Groups at C-4, C-5 or C-12 in artemisinin analogues which are disposed on the same side as the peroxide markedly attenuate activity. In artemisinin itself, inversion of configuration at C-9 such that the methyl group is now on the same face of the molecule as the peroxide also attenuates its activity. (A comprehensive summary of structure–activity relationships, including comparison of antimalarial activities of artemisinin derivatives and analogues relative to artemisinin appears in Avery et al., 2002.) A relatively more subtle, but crucial aspect is displayed by the secoartemisinin analogues, as described above (Fig. 6). As pointed out above, compound 23 is approximately equipotent as an antimalarial with artemisinin. In lacking the carbocyclic system in artemisinin, all compounds are likely to be conformationally more mobile than artemisinin, but variation in the degree of methyl substituents will further affect conformational mobility in each of compounds 22–24 (Avery et al., 1990; Avery et al., 1994). This will be reflected in the difference in antimalarial activities of these compounds.

The nature of the ‘activation’ process which ensues upon complexation was held to be fundamentally different to the random activation hypotheses described above. The carbocyclic system in artemisinin, all compounds are likely to be conformationally more mobile than artemisinin, but variation in the degree of methyl substituents will further affect conformational mobility in each of compounds 22–24 (Avery et al., 1990; Avery et al., 1994). This will be reflected in the difference in antimalarial activities of these compounds.

The nature of the ‘activation’ process which ensues upon complexation was held to be fundamentally different to the random activation hypotheses described above. The carbocyclic system in artemisinin, all compounds are likely to be conformationally more mobile than artemisinin, but variation in the degree of methyl substituents will further affect conformational mobility in each of compounds 22–24 (Avery et al., 1990; Avery et al., 1994). This will be reflected in the difference in antimalarial activities of these compounds.

4.2. Proposal for the active site

More recently, an alternative hypothesis for the mode of action of artemisinins has been proposed, based on structural similarities between the sesquiterpene moieties of thapsigargin and in artemisinins. Thapsigargin (another plant product from *Thapsia garganica*) is an extremely potent inhibitor of Ca^{2+}-transporting ATPases (sarcoplasmic reticulum Ca^{2+}-transporting ATPases or SERCAs) from a wide variety of organisms. It was suggested that artemisinins may act in a similar way, but more specifically to inhibit the SERCA of *P. falciparum* but not mammalian pumps (Eckstein-Ludwig et al., 2003). Evidence in favour of this hypothesis includes demonstrated specificity for inhibition of the SERCA of *P. falciparum*, excellent correlation between assays for inhibiting PiATP6 and killing of parasites, competition between thapsigargin and artemisinins, and also appropriate Fe^{2+}-dependency for inhibition of PiATP6. The localisation of PiATP6 was assayed by visualizing fluorescent thapsigargin in living parasites (Fig. 7). Whilst there are many aspects of this hypothesis that are urgently being examined, it provides an alternative that is amenable to testing that relies both on chemical and molecular biological expertise. Identification of PiATP6 as a target for artemisinins will also permit assessment how changes in this sequence can contribute to drug resistance in parasites that have been exposed to artemisinins in vivo.

Acknowledgement

We would like to thank Dr. U. Eckstein for help with the immunofluorescence. Some studies were funded by The Wellcome Trust (Grant no. 066201). Studies at HKUST are funded through the Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis with financial support from the Government of the HKSAR University Grants Committee Areas of Excellence Fund, Project No. AoE D/10-01, and University Grants Council, Grant No. HKUST 6091102P.

Qinghaosu C-ORGs. 1977. Kuo Xue Tung Bao 22, 142.

