APPLICATION FOR INCLUSION OF EQUINE F(ab’2) ANTIVENOMS IN THE WHO MODEL LIST FOR ESSENTIAL MEDICINES

1 SUMMARY STATEMENT OF THE PROPOSAL FOR INCLUSION

There are more than 5 million\(^1\) snake bites each year in the world mostly in Africa, Middle East and Asia. Snake bites and scorpion stings cause death and disabilities with a major impact in children and workers. The estimated evenomation burden is 150 000 deaths\(^2\) and 400 000\(^3\) severe sequelae per year due to snake envenoming. Heterologous antivenom sera is the only efficient therapy available for the treatment of envenoming to avoid death and sequelae, but the availability of those products is constantly decreasing. Majority of manufacturers have abandoned production, and most of the producers located in developing countries need improvement to meet quality and safety standard requirements. The remaining manufacturers in developed countries are progressively stopping production of safety and efficient equine-derived antivenoms due to lack of demand and funding to support implementation of public program to treat envenomations. As a result, mortality rate and morbidity rate are increasing. The shortage of antivenom has become a very critical public health issue in Africa, Asia, Middle East, Central and South America. In Sub-Saharan Africa, less than 1% of needs in antivenom are satisfied.\(^4\) The world is now at imminent risk of lacking effective treatment for envenomation due to snake or scorpion bites. This is an emergency to ensure a sufficient supply and consecutive usage of safe and efficient antivenom equine sera in developing countries.

4 GENERIC NAME

Equine immunoglobuline F(ab')2 fragments

Pharmacotherapeutic class: Immunosera and immunoglobulins
ATC code: J06AA3 (section 19.02.00.00, core list)

Equine immunoglobuline F(ab')2 antivenoms:

FAV AFRICA polyvalent equine F(ab')2 antivenom for Subsahara African snakes: Bitis, Echis, Naja, Dendroaspsis.

FAVIREPT polyvalent equine F(ab')2 antivenom for Middle East snakes: Bitis, Echis Naja, Cerastes, Macrovipera.

VIPERFAV polyvalent equine F(ab')2 antivenom for European snakes: Vipera

SCORPIFAV polyvalent equine F(ab')2 antivenom for Middle East scorpions: Androctonus, Leiurus, Buthus.

5 FORMULATION

Solution for slow intravenous injection, in vial.

Active ingredients neutralize venoms from poisonous animals (snakes, scorpions) and depend on the genus and species of medical importance for human beings in a particular geographical area.

Active ingredients are quantified in 50 % Lethal Dose in mice (dosage of venom that killed 50% of mice). For instance, Naja haje venom \(\geq 25 \text{ LD } 50 \) means the antivenom is able to neutralized at least 25 LD 50 of Naja haje venom.

FAVAFRICA

Qualitative and quantitative composition per 1 ml:

Active substance
Antivenin immunoglobulin F(ab')2 fragments of equine origin q.s. to neutralise at a minimum

- *Bitis gabonica* venom ------------------------------- \(\geq 25 \text{ LD } 50 \)
- *Bitis arietans* venom -------------------------------\(\geq 25 \text{ LD } 50 \)
- *Echis leucogaster* venom ---------------------------- \(\geq 25 \text{ LD } 50 \)
- *Echis ocellatus* venom----------------------- ≥ 25 LD 50
- *Naja haje* venom ------------------------ ≥ 25 LD 50
- *Naja melanoleuca* venom------------------ ≥ 20 LD 50
- *Naja nigricollis* venom------------------ ≥ 20 LD 50
- *Dendroaspis polylepis* venom------------- ≥ 25 LD 50
- *Dendroaspis viridis* venom--------------- ≥ 25 LD 50
- *Dendroaspis jamesoni* venom------------- ≥ 25 LD 50

Excipients
- Sodium chloride --- 9 mg
- Polysorbate 80--- 0.05 mg
- Water for injections --------------------------------------- qs 1 ml
- Concentrated hydrochloric acid or sodium hydroxideqs pH 6.0-7.0

FAVIREPT

Qualitative and quantitative composition per 1 ml:

Active substance
Antivenin immunoglobulin F(ab')2 fragments of equine origin q.s. to neutralise at a minimum
- *Bitis arietans* venom--------------------------------------- ≥ 25 LD 50
- *Echis leucogaster* venom---------------------------------- ≥ 25 LD 50
- *Naja haje* venom--- ≥ 25 LD 50
- *Naja nigricollis* venom---------------------------------- ≥ 20 LD 50
- *Cerastes cerastes* venom------------------------------ ≥ 20 LD 50
- *Macrovipera deserti* venom------------------------------- ≥ 20 LD 50

Excipients
- Sodium chloride --- 9 mg
- Polysorbate 80--- 0.05 mg
- Water for injections --------------------------------------- qs 1 ml
- Concentrated hydrochloric acid or sodium hydroxideqs pH 6.0-7.0

VIPERFAV

Each 2 ml syringe contains:
- **Active ingredient**
 F(ab')2 fragments of equine antivenom immunoglobulins: qs to neutralize not less than
 - *Vipera aspis* venom -- ≥ 500 LD50
 - *Vipera berus* venom --------------------------------------- ≥ 250 LD50
 - *Vipera ammodytes* venom---------------------------------- ≥ 500 LD50

Other ingredients
- Sodium chloride --- 18 mg
- Polysorbate 80--- 0.1 mg
- Water for injections --------------------------------------- qs. 2 ml
- Solution adjusted to pH 6.0 - 7.0
SCORPIFAV

Qualitative and quantitative composition for 1 ml

Active substance
F(ab')2 fragments of equine immunoglobulins GT (IgGT) against venom sufficient to neutralize, as a minimum:

- Androctonus australis hector venom \(\geq 50 \text{ LD}_{50} \)
- Leiurus quinquestriatus quinquestriatus venom \(\geq 50 \text{ LD}_{50} \)
- Buthus occitanus mardochei venom \(\geq 50 \text{ LD}_{50} \)

Other ingredients
- Sodium chloride \(\geq 9 \text{ mg} \)
- Polysorbate \(\geq 0.05 \text{ mg} \)
- Water for injections \(\text{q.s. 1 ml} \)
- Concentrated hydrochloric acid or sodium hydroxide q.s. pH 6.0 - 7.0

6 MANUFACTURER
SANOFI PASTEUR S.A. Lyon, France

7 INDIVIDUAL MEDICINE

8 PUBLIC HEALTH RELEVANCE

I) SNAKE BITES INCIDENCE AND MORTALITY

A study from different publications estimated the incidence and mortality of snake bites as shown:

<table>
<thead>
<tr>
<th>Region</th>
<th>Population x10^6</th>
<th>Total bites</th>
<th>N° of envenomations</th>
<th>N° of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPE</td>
<td>730</td>
<td>25,000</td>
<td>8,000</td>
<td>30</td>
</tr>
<tr>
<td>MIDDLE EAST</td>
<td>160</td>
<td>20,000</td>
<td>15,000</td>
<td>100</td>
</tr>
<tr>
<td>USA and CANADA</td>
<td>270</td>
<td>45,000</td>
<td>6,500</td>
<td>15</td>
</tr>
<tr>
<td>CENTRAL AND SOUTH AMERICA</td>
<td>400</td>
<td>300,000</td>
<td>150,000</td>
<td>5,000</td>
</tr>
<tr>
<td>AFRICA</td>
<td>760</td>
<td>1,000,000</td>
<td>500,000</td>
<td>20,000</td>
</tr>
<tr>
<td>ASIA</td>
<td>3,500</td>
<td>4,000,000</td>
<td>2,000,000</td>
<td>100,000</td>
</tr>
<tr>
<td>OCEANIA</td>
<td>20</td>
<td>10,000</td>
<td>3,000</td>
<td>200</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,840</td>
<td>5,400,000</td>
<td>2,682,500</td>
<td>125,345</td>
</tr>
</tbody>
</table>

Even if the basis for these figures has been questioned (different periods, times, methodologies, no standardized data...), this gives a significant tendency of the public health problem in the world.

Efforts are made to improve epidemiological data reporting: snake bites and scorpion stings envenomations are part of the international classification of diseases:

*Code T63.0 in the International classification of disease and related health problems 10th, version 2006 : T63 = “Toxic effect of contact with venomous animals, T63.0 snakes bites, T63.2 venom of scorpion

But reports on snake bites and scorpion stings are scare and difficult to pool and analyse:

In Kenya, 151 snake bites per 100 000 inhabitants each year and a mortality rate of 6,7 / 100 0006.

In Ivory Coast, a prospective study reported more than 200 bites per 100 000 inhabitants.7

In North Cameroon, snake bite incidence was from 50 to 250 /100 000 depending on the geographical area, (mean 200/100 000)8.

In savannah area of eastern Senegal, from 1976 to 1999: “The average annual mortality rate from snake bite was 14 deaths per 100 000 population... This cause represented 28 % of the total number of deaths by accident.”9

In different parts of Asia, some estimates from the report “Guidelines for the Clinical Management of Snake bite in the South-East Asia Region” WARREL D.A.10. It should be mentioned that this region benefit from a better case reporting system than Africa area.

Bangladesh – a survey of 10% of the country in 1988-1989 revealed 764 bites with 168 deaths in one year. Cobra bites (34% of all bites) caused a case fatality of 40%.

10 WARREL D.A., “Guidelines for the Clinical Management of Snake bites in the South-East Asia Region” World Health Organization ; 2005, p 10
India – estimates in the region of 200,000 bites and 15-20,000 snake bite deaths per year, originally made in the last century, are still quoted. No reliable national statistics are available. In 1981, a thousand deaths were reported in Maharashtra State. In the Burdwan district of West Bengal 29,489 people were bitten in one year with 1,301 deaths. It is estimated that between 35,000 and 50,000 people die of snake bite each year among India’s population of 980 million.

Myanmar (Burma) – snake bites and snake bite deaths have been reliably reported from colonial times. Russell’s vipers are responsible for 90% of cases. In 1991, there were 14,000 bites with 1,000 deaths and in 1997, 8,000 bites with 500 deaths. Under-reporting is estimated at 12%. There are peaks of incidence in May and June in urban areas and during the rice harvest in October to December in rural areas.

Nepal – there are estimated to be at least 20,000 snake bites with about 200 deaths in hospitals each year, mainly in the Terai region. One survey suggested as many as 1,000 deaths per year. Among 16 fatalities recorded at one rural clinic during a monsoon season, 15 had died on their way to seek medical care.

Pakistan – there are an estimated 20,000 snake bite deaths each year.

Philippines – there are no reliable estimates of mortality among the many islands of the archipelago. Figures of 200-300 deaths each year have been suggested. Only cobras cause fatal envenoming, their usual victims being rice farmers.

Sri Lanka – epidemiological studies in Anuradhapura showed that only two thirds of cases of fatal snake bite were being reported to the Government Agent Statistical Branch. However, the Registrar General received reports of more than 800 deaths from bites and stings by venomous animals and insects in the late 1970s and the true annual incidence of snake bite fatalities may exceed 1,000.

Thailand – between 1985 and 1989, the number of reported snake bite cases increased from 3,377 to 6,038 per year, reflecting increased diligence in reporting rather than a true increase in snake bites; the number of deaths ranged from 81 to 183 (average 141) per year. In 1991 there were 1,469 reported bites with five deaths, in 1992, 6,733 bites with 19 deaths and, in 1994, 8,486 bites with eight deaths. Deaths reported in hospital returns were only 11% of the number recorded by the Public Health Authorities.

Viet Nam – there are an estimated 30,000 bites per year. Among 430 rubber plantation workers bitten by Malayan pit vipers between 1993 and 1998, the case fatality was 22%, but only a minority had received antivenom treatment. Fishermen are still occasionally killed by sea snakes but rarely reach hospitals.

II) SCORPION STINGS INCIDENCE AND MORTALITY

There is no overall assessment of scorpion stings in the different continents and in the world.
In Algeria, scorpion stings incidence was reported to be between 30,000 to 50,000 per year from 1991 to 2000 with an average of 100 death per year11. Scorpion envenoming is a real public health problem in Algeria.

The lethality rate in children was 23\% in a study performed in Niger in 199912.

In Mexico, scorpion sting incidence is reported to be about 63,000 stings per year and the mortality rate 310 per year13.

All authors agree to declare those assessments are underestimated: Many bitten or stung people die before arriving to hospital; most victims (50 to 90\%)14 consult traditional practitioners.

Envenoming is a public health issue because of incidence of bites and stings and of high morbidity and mortality rates but also because children and workers are at risk people.

III) SOCIAL IMPACT

In developing countries snake bite is a significant occupational injury. Farmers, agricultural workers, hunters are particularly affected. Children are also at risk of both snake bites and scorpion stings, and represent a significant part of severe envenomation (unfavourable body weight / venom dose ratio).

"In South-East Asia, snake bite is an occupational hazard of rice farmers; rubber, coffee and other plantation workers; fishermen and those who handle snakes"15.

"The 6 to 40 age group encompasses the most active age group in life and perhaps the most at risk of encountering snakes during their respective occupational, social, or recreational pursuits."16

Children are at risk of meeting snakes and scorpions and moreover, their small body weigh and volume allow a lower dilution of venom components leading to more severe envenoming. Lethality and sequelae rate are higher in children.

In Zimbabwe, on 274 cases studied, 5 death : 4 children under 8 years old17.

13 CALDERON-ARANDA E.S., DEHESA-DAVILA M., CHAVEZ-HARO A., POSSANI L. D., «Scorpion stings and their treatment in Mexico», Envenomings and their treatments, ed. Foundation Marcel Merieux ; 1996, p 311
14 Op. cit CHIPPAUX J.P. ., «Evaluation de la situation épidemiologique et des capacités de prise en charge des envenimations ophidiennes en Afrique subsaharienne francophone.», p 263
15 Op. Cit. WARREL D.A. “Guidelines for the Clinical Management of Snake bites in the South-East Asia Region”
16 NHACHI C., KASIFO O., “Snake poisoning in rural Zimbabwe-A prospective study”, Journal of Applied Toxicology ; 1993, 13, p1
17 Op. cit. NHACHI
In Cameroon, the lethality rate was higher in children before 5 years old: 7.1% than in older: around 3.7% for patients from 5 to 45 years old.18

In Niger, infants less than 1 year old represented 11% of scorpion stings in paediatric department and children between 6-15 years old, 50%19.

In Algeria, between 1991 and 2000 children from 5 to 14 years old represented around 25% of stings with a lethality rate of 46%20.

In some rural hospitals of Africa, more than 40% of the total hospital admissions may be due to snake bite victims at peak times (during the rainy season between July and August).21

Snake bites and scorpion stings have an important social and economical impact because they affect workers and children and cause long hospital care, sequelae and even death in those active people.

9 TREATMENT DETAILS

I) INDICATION

Immunotherapy is indicated in case of \textit{clinical and biological evidence of envenoming}.

“Antivenom treatment is recommended if and when a patient with proven or suspected snake develops one or more of the following signs:

\textbf{Systemic envenoming}

- Haemostatic abnormalities: spontaneous systemic bleeding (\textit{clinical}), coagulopathy (20WBCT or other laboratory) or thrombocytopenia (<100 x 10^9/litre) (\textit{laboratory})
- Neurotoxic signs: ptosis, external ophthalmoplegia, paralysis etc (\textit{clinical})
- Cardiovascular abnormalities: hypotension, shock, cardiac arrhythmia (\textit{clinical}), abnormal ECG
- Acute renal failure: oliguria/anuria (clinical), rising blood creatinine/urea (\textit{laboratory})
- (Haemoglobin-/myoglobin-uria:) dark brown urine (\textit{clinical}), urine dipsticks, other evidence of intravascular haemolysis or generalised rhabdomyolysis (muscle aches and pains, hyperkalaemia) (\textit{clinical, laboratory})

18 Op. cit. CHIPPAUX J.P.
19 Op. cit. ATTAMO h.
20 Op. cit. BENGUIEDDA C.H.
21 HARRIES A.D., CHUGH K.S., NGARE B., “Snake bite : frequency of adult admissions to a general hospital in North-East Nigeria”, Annals of Tropical Medicine and Parasitology; 1984, 78, n°6, p 665
• Supporting laboratory evidence of systemic envenoming (see 4.5, page 30)

Local envenoming
- Local swelling involving more than half of the bitten limb (in the absence of a tourniquet) Swelling after bites on the digits (toes and especially fingers)
- Rapid extension of swelling (for example beyond the wrist or ankle within a few hours of bites on the hands or feet)
- Development of an enlarged tender lymph node draining the bitten limb \(^{22}\)

From Sanofi Pasteur core data sheet, this table, to be used for African and Middle-eastern snake bites, helps to come to the decision to perform immunotherapy or not:

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Biological</th>
<th>Action to be taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>No oedema No bleeding</td>
<td>CT*<30 min CT >30 min</td>
<td>Placed under observation Viper envenomation Infusion immunotherapy</td>
</tr>
<tr>
<td>Isolated oedema No bleeding</td>
<td>CT <30 min CT >30 min</td>
<td>Placed under observation Viper envenomation Infusion immunotherapy</td>
</tr>
<tr>
<td>Bleeding (any stage) with or without oedema</td>
<td>CT <30 min CT >30 min</td>
<td>Viper envenomation Infusion immunotherapy Viper envenomation Direct intravenous immunotherapy</td>
</tr>
<tr>
<td>Neurological signs, ptosis, trismus, dyspnoea....</td>
<td>CT <30 min</td>
<td>Cobra envenomation Direct intravenous immunotherapy</td>
</tr>
</tbody>
</table>

* : coagulation time in a plain tube.
\(\checkmark\) : may be replaced by direct intravenous injection depending either on the equipment available in the treatment centre or on management of the envenomation.

Sanofi Pasteur core data sheet

Clotting time test: place a few millilitres of freshly sampled venous blood in a dry tube and wait for coagulation: if it is greater than 30 min it is an absolute indication of immunotherapy.\(^{23}\)

II) AT RISK POPULATION

Children: unfavourable ratio body weigh/venom quantity.

Pregnant women: venom can pass through the placenta barrier and may cause foetal death.

III) CONTRA-INDICATION

In order to detect individuals who are pre-sensitised to heterologous proteins, patients should be routinely asked in detail about their allergic history, and, in particular, about whether previous injections of heterologous sera caused any reaction to equine F(ab')2 fragments. Patients should also be questioned about allergies to animal contact, particularly horse, or even food allergies.

The risk of adverse effects such as anaphylactic shock should always be assessed in relation to the severity of envenomation. The risk should be considered to be rare if given highly purified antivenom.

Contra-indication: Known history of allergy to equine heterologous proteins. This contraindication is relative if envenomation is life-threatening, provided that treatment for anaphylactic shock can be implemented immediately, if necessary.

VI) FIRST AID MEASURES

It is highly recommended not to carry out any first aid measures such as cautery, amputation, application of tourniquets, etc. It is up to the first helper to decide whether traditional remedies such as aspiration and application of a black "healing" stone are appropriate treatments, however, the patient should be transferred to a medical facility without delay. It is recommended that first aid be limited to the following measures:

- Rapid but careful cleaning of the wound (alcohol, antiseptic or soap),
- Slight compression of the bitten/stung limb with a bandage (unless oedema is present),
- Immobilisation of the bitten/stung limb,
- Mild analgesic and sedative treatment (paracetamol and antihistamines),
- Transfer to a medical facility / specialised hospital department (A & E).

V) HOSPITAL TREATMENT

In all cases of envenomation, the subject should be rapidly transferred to a medical facility / specialised hospital department (A & E).
Envenomation can be confirmed once an investigation for patent physical symptoms (oedema, bleeding) and a plain tube coagulation test have been carried out. The patient's condition should be clinically graded before introducing treatment.

The victim should be immobilised, reassured and given pain relief using analgesics (not salicylate-containing analgesics or anti-inflammatories).

Local disinfection of the bite should be carried out or completed.

If a superinfection is present, general antibiotic therapy against anaerobic micro-organisms should be considered.

Unprotected subjects should be vaccinated and passive antitetanus immunoprophylaxis should be administered on a routine basis.

When signs of envenomation are present, it is essential to access a large peripheral vein, on the opposite side of the bitten limb to allow administration of fluids to correct the haemodynamic state.

In case of circulatory collapse, administer intravenous fluids and, if necessary, vasopressive amines.

If anaphylactic shock due to the venom is suspected, inject 0.5 mg of adrenaline subcutaneously, or 1 to 2 µg/kg intravenously: repeat as necessary using a syringe pump (0.001 to 0.005 µg/kg/min).

“Antivenom treatment should be given as soon as it is indicated. It may reverse systemic envenomation even when this has persisted for several days or, in the case of haemostatic abnormalities, for two or more weeks.”

Treatment of scorpion envenomation is based on two separate but complementary therapeutic strategies. It consists of combining a specific action against the diffusion and fixation of the toxins on the one hand and establishment of symptomatic treatment against the toxic effects on the other.

VI) CLINICAL GRADING OF ENVENOMATION

Standardized clinical grading of envenomation is essential to adapt the treatment to the patient condition that is linked to venom concentration.

24 OP. Cit. WARREL D.A., “Guidelines for the Clinical Management of Snake bites in the South-East Asia Region” p 33
African and middle eastern snake bites

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Signs and symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD</td>
<td>Oedema</td>
<td>Bleeding</td>
</tr>
<tr>
<td>0</td>
<td>going up the leg or forearm but not affecting the knee or elbow</td>
<td>Bleeding persists for more than one hour at the site of the bite</td>
</tr>
<tr>
<td>2</td>
<td>Reaching the knee or elbow</td>
<td>Appearance of bleeding from skin lesions other than at the bite (damage to the skin, oedema)</td>
</tr>
<tr>
<td>3</td>
<td>Reaching past the knee or the elbow but not yet reaching the top of the limb</td>
<td>Appearance of bleeding from mucous membranes (gum bleeding, epistaxis).</td>
</tr>
<tr>
<td>4</td>
<td>Reaching the top of the limb</td>
<td>Bleeding under skin not affected by lesions (purpura)</td>
</tr>
<tr>
<td>5</td>
<td>Reaching beyond the top of the limb</td>
<td>Exteriorisation of marked visceral bleeding (haemoptysis, haematemesis, melaena)</td>
</tr>
</tbody>
</table>

The clinical picture may change: a repeat assessment of the grade is recommended.

European snake bites:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Signs and symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No envenomation</td>
<td>- Mark of fangs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No oedema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No local reaction</td>
</tr>
<tr>
<td>1</td>
<td>Minimal envenomation</td>
<td>- Local oedema around bite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No systemic symptoms</td>
</tr>
<tr>
<td>2</td>
<td>Moderate envenomation</td>
<td>- Regional oedema (major part of limb) and/or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Moderate systemic symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(transient hypotension, vomiting, diarrhoea)</td>
</tr>
<tr>
<td>3</td>
<td>Severe envenomation</td>
<td>- Extended oedema (beyond bitten limb) and/or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Severe systemic symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(prolonged hypotension, shock, bleeding)</td>
</tr>
</tbody>
</table>

(Audebert F, Sorkine M, Bon C. Toxicon 1992;30:599-809.)
Scorpion stings:

Four stages, in increasing order of severity (Goyffon et al. 1982) have been described in subjects stung by *Androctonus australis* scorpions. These clinical stages do not, however, necessarily correspond to progression of the envenomation. The latter may be serious from the outset.

Stage 1: the local symptoms at the site of the sting are intense pain and burning, but without swelling or inflammation, confirming inoculation of venom and therefore envenomation.

Stage 2: the local symptoms are accompanied by moderate systemic signs (sweating, agitation, excessive salivation, nausea and muscarinic syndrome characteristics), high blood pressure and tachycardia that may be associated with fever.

Stage 3: the local symptoms are accompanied by severe systemic signs (vomiting and diarrhea, bronchial obstruction and/or pulmonary oedema with cyanosis, tendency towards cardiovascular collapse with significant ECG disturbances), consciousness is retained.

Stage 4: concerns 10 to 20% of aggravated cases of stage 3, indicate significant neurotoxicity. Progression is characterised by shock with cardiovascular collapse, pulmonary oedema and...

VI) DOSAGE AND ADMINISTRATION

Antivenom must be administered as soon as possible after envenomation, the earlier the administration is performed, the more effective the treatment will be.

The dosage depends on the severity of envenoming. Repeated doses are sometimes needed in severe cases.

Severity of envenoming assessment depended on clinician experience that induced variability in clinical evaluation and in antivenom treatment. Now the clinicians can use grading tables based on scientific criteria to relate dosage to the patient condition. More objective method as enzyme immunoassays have been developed to detect and quantify venom in the blood or body fluids and so to calculate the amount of antivenom needed. They cannot be performed as a routine treatment in developing countries but there are useful to validate the grading tables: “Mean serum venom concentrations showed an association between clinical signs and the venom level”

A) INITIAL DOSAGE

Dosage is the same for adults and children, irrespective of weight (because the same quantity of venom is injected)
The need of reference venom preparations to test the antivenoms was raised during
the WHO workshop on standardization and control of antivenom (2001)27. The system
of mouse lethality testing was chosen and it standardisation was recommended.

Sanofi Pasteur controls and tests antivenom products range from its own references.
Active substances are quantified in lethal dose in mouse in accordance with standard
operating procedures. Antivenoms are F(ab’)\textsubscript{2} fragments so their consistency is better.
As cleavage of IgG with papain treatment (for Fab) induced about 20% of antigenic
binding sites destruction resulting in considerable variations in final product quality. The
process of F(ab’)\textsubscript{2} fragment production can be more readily controlled.

Moreover, clinical trials have demonstrated efficacy of antivenom treatment according to
the following dosages and schedules for patient grade 2 or more (see tables above),
(Grade 1 should be monitored closely for at least 12 hours to detect developments to
grade 2).

For Africa and Middle East snake bites ; FavAfrica and Favirept :
Initial dosage is **20 mL of antivenom**28 (containing at least 20 LD\textsubscript{50} mice per mL of each
species valence) by slow direct intravenous injection or in diluted in 250 mL of infusion
fluid (0.9% sodium chloride or 5% glucose solution) (see Sanofi Pasteur table above).

For European snake bites Viperfav :
Initial dosage is **4 mL** of antivenom (containing at least 125 per mL LD\textsubscript{50} mice of each
species valence) diluted in 100 mL of 0.9% sodium chloride solution in infusion.

"**ViperfavR, available on the market since 2000, is administered in intravenous infusion,
the only route effective. Tolerance to the treatment is good and clinical improvement is
rapid after administration of 1 to 4 infusions of antivenom. When confronted with life-
threatening envenoming, there is no strong argument to justify the non-use of an
antivenom.**"29

For Scorpion stings ; Scorpifav:
Initial dosage is **10 mL** of antivenom (containing at least 50 LD\textsubscript{50} mice per mL of each
species valence) diluted in 50 mL of 0.9% sodium chloride solution

"**Our group recommends intravenous administration of 10-20 mL of scorpion antivenom
(F(ab’)\textsubscript{2} antivenom ; relative molecular mass, 90) to patients (mainly children) with
systemic manifestations of envenoming...**"30

After the first antivenom administration, the patient must be monitored closely for at
least 12 hours.

\begin{thebibliography}{99}
\bibitem{27} THEAKSTON R.D.G., WARREL D.A., GRIFFITHS E., "Report of a WHO workshop on the standardization and control of antivenoms", Toxicon ; 2003, p546
\bibitem{28} CHIPPAUX J.P., AMADDI EDINE S., FAGOT P.,RAGE V., LANG J., "Therapeutic approach to snake bite in tropical Africa", Envenomings and their treatments, ed. Foundation Marcel Merieux ; 1996, p 247-253
\bibitem{29} DE HARO L., "Envenoming by serpent bites in France and its treatment", Presse-Medicale ; 2003; 32(24), p 1131
\end{thebibliography}
B) TOTAL DURATION FOR ADMINISTRATION

5 minutes by slow intravenous injection

1 hour by infusion (less for scorpion antivenom: 50 mL dilution). Always starting infusion at slow rate: 15 drops/min or 50 mL/hour

C) SUBSEQUENT ADMINISTRATION

Subsequent administrations depend on changes in the subject's clinical condition and the clinical response to the first infusion:

Changes in plain tube coagulation time (≥ 30 minutes), in the bleeding stage (≥ 2) and/or the appearance or persistence of neurological disorders should be taken into consideration when deciding whether to re-administer the antivenin.

The choice of antivenom is important as we know that F(ab’)2 fragments last longer in the organism allowing delayed readministration and decreasing total dosage of antivenom.

If the subject’s condition does not improve within 2 hours of the end of infusion, or if it is transient, a second dose via intravenous infusion should be given (under the same conditions as described).

A third intravenous infusion may also be considered using these same criteria: this should be administered 4 hours after the end of the second infusion or 6 hours after the end of the first infusion. As represented in this diagram:

\[
\begin{align*}
2 \text{ hours} & \quad \uparrow \\
\text{20 mL (2 ampoules) as a direct intravenous injection for 5 minutes or as a dilute infusion in 250 mL of infusion fluid (0.9% sodium chloride or 5% glucose solution) for one hour.} \\
4 \text{ hours} & \quad \uparrow \\
\end{align*}
\]

\[
\begin{align*}
\uparrow & \quad \uparrow \\
& \quad \uparrow \\
\end{align*}
\]

\[
\begin{align*}
|/| & \quad |/| & \quad |/| & \quad |/|
\end{align*}
\]

A follow-up visit should be made every morning and the antivenin should be re-administered if the bleeding stage is ≥ 2.
A clinical trial on FavAfrica conducted in Cameroon, in 1996 showed that 54.3 % of patients recovered after only one administration (20mL).

For European snake bites, the infusion may be readministered every 5 hours, depending on the clinical progression.

For scorpion stings, subsequent administrations every 4 hours, depending on the clinical improvement.

9 SUMMARY OF COMPARATIVE EFFECTIVENESS

I) SNAKES BITES ENVENOMING CLINICAL EFFECTS31:

Five families of snakes: Elapidae, Viperidae, Hydrophiidae, (sea-snakes) Colubridae (back-fanged), Atractaspididae (burrowing) are potentially dangerous for humans. The most dangerous have powerful venom and live close to human beings. Among them, two families own those criterias:

ELAPIDAE (Neurotoxic venoms)
VIPERIDAE (Hemotoxic and necrosic venoms)

Most bites occurs in rural areas. They are inflicted on the feet or ankles, most of the time during the evening, when people tread on snake, sometimes at night, while sleeping and moving in their sleep.

Approximatively 15 to 65% of bites are dry bites32: no venom is injected or the snake is not a poisonous snake. But even if there is no envenoming, the bites must be treated. Because the fear following a snake bite may cause flushing, sweating, dizziness, breathlessness, constriction of the chest, palpitations, acroparaesthesiae and the bites can lead up to important secondary infections.

1) ELAPIDAE ENVENOMING

1.1 LOCAL EFFECTS
Local swelling

31 WARREL D.A., « Clinical features of envenoming from snakes bites », Envenoming and their treatments, Ed Fondation Marcel Merieux, 1996, p 63-74
32 CHIPPAUX J.P. « Venins de serpents et envenimations », Collection Didactiques IRD ed., 2002, p 198-199
Blistering
Superficial necrosis

Local effects may be minimal in case of bites by Kraits, Mambas, coral snakes, Naja haje, Naja mossambica

1.2 VENOM SPAT (Naja nigricollis, mossambica…)

Intense pain, congestion of the conjunctivae, infection of the conjunctivae, blepharospasm, palpebral oedema, leucorrhoea. Sometimes corneal erosions. Rarely hypopyon and anterior uveitis (when venom is absorbed into the anterior chamber). Rarely transient facial nerve paralysis (venom in the lymphatics). Rarely secondary infection of corneal abrasions causing blinding opacities or panophthalmitis.

1.3 SYSTEMIC EFFECTS: NEUROTOXICITY SYNDROM

Early symptoms:

Vomiting, Heaviness of the eyelids, Blurred vision, Paraesthesia around the mouth, Hyperacusis, Hypersalivation, Headache, Dizziness, Vertigo and first paralysis symptoms: ptosis and external ophtalmoplegia (may be delayed for hours)

Later symptoms: paralysis

First, facial and neck muscles get paralysed. Then, respiratory muscles become paralysed: respiratory distress, tachycardia, sweating, central cyanosis.

2) VIPERIDEA ENVENOMING

SEVERE LOCAL EFFECTS

Swelling spreading rapidly
Painful enlarged bruising
Blistering at site of bite
SEVERE NECROSIS (may cause amputation)

SYSTEMIC EFFECTS

Nausea, vomiting, faintness. Rarely rhabdomyolysis, loin pain, renal failure, shock, intracompartmental syndrome.

HAEMOSTATIC DISTURBANCES

Persistent bleeding from the fang puncture wounds and from new or partially healed wounds.
Spontaneous systemic haemorrhage: bleeding of the gums, epistaxis, haematemesis, petechiae, cutaneous ecchymoses.
Headache, meningism and coma: suggest subarachnoid and intracerebral haemorrhage.
3) COLUBRIDAENVENOMING

Colubridae envenoming is more often moderate but can be severe when they are repeated bies or prolonged bites. Early symptoms are swelling bleeding from the fangs punctures and faintness. Later symptoms can be vomiting, abdominal pain, headache, extensive bruising, incoagulable blood and renal failure.

4) ATRACTASPIDIDAE ENVENOMING

Local effects are pain, swelling, blistering and necrosis. Systemic effects are nausea, vomiting diarrhoea, hypertension, dyspnoea, respiratory failure

5) HYDROPHIIDAE ENVENOMING (see-snakes)

No local effects (as necrosis, swelling, bruising…), painless. First symptoms are headache, sweating, thirst, vomiting, muscles aches, trismus, cramps. Later symptoms are ptosis, ophtalmoplegia paralysis.

II) SCORPION STINGS ENVENOMINGS

Of about 1200 scorpion species, a few are really dangerous for humans. The most dangerous are from genii: Androctonus, Buthus, Centruroides, Tityus, Leiurus, Mesobuthus. Stings occur in Africa, America and Middle East.

The clinical features of scorpion envenoming are:
Vomiting, intense pain at sting site, hyperthermia, arterial hypertension, cardiac arrhythmia: sinus bradycardia or sinus tachycardia, ventricular ectopic beats, rarely complete atrioventricular block, sinus arrest, heart failure and pulmonary oedema.

III) IMMUNOTHERAPY

Symptoms of envenomation evolve for days in the absence of antivenom treatment and may cause DEATH due to respiratory paralysis, haemorrhage, shock or SEQUELAE: amputation, severe physical disability, chronic neurological deficit, chronic renal failure.

Antivenoms had suffered from misuse: subcutaneous injection, unknown optimal dosage and administration schedule and from the fear of adverse reactions. But nowadays their efficacy has been proved and their high purity level allows secure intravenous injections.
“Antivenom is the only effective antidote to snake venom”.

“Undoubtedly the mainstay of snake bite treatment in Australia is antivenom. All current antivenoms are made in horses by CSL Ltd. There are a refined F(\text{ab}^\prime)2 immunoglobuline G fraction of horse serum and have a good reputation for efficacy and a relatively low incidence of immediate side effects (Sutherland, 1977; Sutherland and Lovering, 1979; Sutherland, 1992)…These antivenoms are the only specific treatment for severe snake bite and are life saving. They are particularly effective in reversing coagulopathy. They can reverse postsynaptic paralysis but are not likely to reverse full paralysis due to presynaptic neurotoxins, although they may halt progression of paralysis if given early.”

Even if untreated snake bites or scorpion stings lethality is hard to assess, we have some figures:

Tityus serrulatus stings caused the death of 3-5% of schoolchildren and 15-20% of babies and young children in Brazil (Büchler 1978). In Brazil, 3860 patients with severe envenoming were treated by immunotherapy: lethality among children was 1% and global lethality was 0,28%.

“The mortality after untreated Crotalus durissus terrificus bites is said to have been 74%, but this has been reduced to less than 12% by antivenom. Before antivenom treatment in 1955, taipan bites in Australia were said to be almost always fatal (Sutherland, 1983).”

In Nigeria, lethality in untreated patients appears to be between 10 and 20% and less than 5% with antivenom.

In the United States of America: “The wide distribution and use of antivenom since about 1954 has reduced the fatality rate from 3-5% to less than 0.2%.”

Unfortunately, in some African areas suffering from the lack of antivenom, we still can notice really high lethality rates. « La létalité spécifique observée au centre médical est de 29,25% pour le genre Echis, 43,6% pour le genre Bitis et 100% pour les deux espèces de Naja. » Lethality from Echis = 29.25%, lethality from Bitis = 43.6% and lethality from Naja = 100%.

« Les cas de morsures de serpent traitées par un SAV se répartissent de la façon ci-après :

Echis (Viperidae) 43 cas sur 253 avec 100% d’efficacité

34 WHITE J., “Treatment of snake bites in Australia”, Envenomings and their treatments, ed. Foundation Marcel Merieux ; 1996, p 276
36 Op. Cit WARREL D.A., « Clinical features of envenoming from snakes bites », p 70
37 WARREL DA 1976, PUGH and THEAKSTON RDG, 1980
Bitis (Viperidae) 13 cas sur 110 avec 100% efficacité
Naja (Elapidae) 11 cas sur 11 avec 0% d'efficacité ; il s'agissait d'un SAV contre les venins de Viperidae.

Echis : 43 of 253 patients were treated by antivenom, with efficacy 100%
Bitis : 13 of 110 patients were treated by antivenom, with efficacy 100%
Naja 11 of 11 were treated by antivenom, with efficacy 0% ; it was an antivenom against viperidae.

While a clinical trial had showed efficacy of FAV-Africa, antivenom against Bitis Echis Naja and Dendroaspis genii :
"Clinical cure was obtained in all 46 patients ; a total of 1 720 mL of FAV-Africa was administered, 37 mL +/- 4 mL per patient. The mean hospital stay was 6,6 days and the mean time to resolution of haemorrhaging was 1,1 days."

In this study, the mean recovery time was just 1 day and 2 hours, a lot of authors have reported the efficiency of antivenom not only to decrease lethality rate but also to reduce the hospital length 41 and to prevent sequelae when hospital admission is not delayed 4243.

Antivenoms are efficient to shorten hospital length, to reduce sequelae and to decrease lethality rate.

11 SUMMARY OF COMPARATIVE EVIDENCE ON SAFETY

Reactions to serotherapy usually reported are early anaphylactic reactions and late reactions :

Early anaphylactic reactions: (from 5 minutes to 3 hours after antivenom injection)

Anaphylactoid reactions: urticaria, dry cough, fever, nausea, vomiting, abdominal colic, diarrhoea and tachycardia.

More severe reactions are unusual: hypotension, bronchospasm, angio-oedema, Quincke’s oedema or anaphylactic shock.

Most of those reactions are not allergic reactions (IgE-mediated) they are not type I hypersensitivity reactions to horse or sheep proteins (from radioallergosorbent tests there is no specific IgE).

Those reactions are caused by complement activation by IgG aggregates or residual Fc fragments or direct stimulation of mast cells or basophils by antivenom protein.

Late reactions: (around 6 days after treatment.)

Serum sickness: fever, nausea, vomiting, diarrhoea, itching, recurrent urticaria, arthralgia, myalgia, lymphadenopathy. They are certainly due to the formation of immune complexes (more often spontaneous recovery in 2 to 4 days).

Pyrogenic reactions are also reported: fever, chills, vasodilatation and a fall in blood pressure, commonly within 1 to 2 hours after antivenom administration. They are caused by pyrogen contamination during the manufacturing process.

Fab fragments antivenoms are known to induced renal complications because they are eliminated through the kidney.

It was experimentally acknowledged that activation of complement was dose dependant antivenom and the removal of aggregates reduce this activation.

"A proportion of patients, usually more than 20%, develop a reaction either early (within a few hours) or late (5 days or more) after being given antivenom."

"Incidences of early adverse reactions range from 5 to 80% for products made of the same type of molecule or fragment."

In fact, the incidence of adverse reactions is strictly related to the quality of antivenom. The more antivenom is purified the less adverse reactions occur:

« The workshop agreed that every effort should be made to improve production protocols with a view to improving the purity of the IgG, F(ab’)2 or Fab Fragments and minimizing contaminating proteins or proteins aggregates. The aim should be a product

with a total protein concentration as low as possible. Also, strict limits should be set for the presence of pyrogenic materials. It was generally accepted that the removal of Fc Fragments from IgG Prevented complement activation and so reduced the risk of reactions. »

A comparative proteins assay of 3 polyvalent African snakes antivenoms has been performed by Universities of Yaoundé and Douala, Centre Pasteur of Cameroun and Institut de Recherche pour le Développement, Sénégal. This assay has proved the high purity level of FAVAFRICA : « 100% of the proteins are gammaglobulins. This fact explains the outstanding safety of the product that has been confirmed in a clinical trial… »

Clinical trials have been performed to assess safety of two antivenoms :

- First generation antivenom IPSER Africa™ (Sanofi Pasteur)
 Over 223 patients enrolled, 6.3% developed early adverse reactions, 1 anaphylactic shock (0.4%) and 1 serum sickness (0.4%).

- Last generation antivenom : 2 additional purification steps, FAVAFRICA™
 The antivenom was administrated by direct intravenous route (no dilution). The tolerance was better: 4.3% minor adverse reactions, no anaphylactic shock, no serum sickness.

Since 2002, no adverse event related to Favafrica or other antivenoms has been reported to the pharmacovigilance department of Sanofi Pasteur.

The manufacturing process of Sanofi Pasteur antivenoms involves two ammonium sulphate precipitation steps, a heat coagulation, a aluminium gel absorption, a chromatography, and two diafiltrations in accordance with strict standard operating procedures. This method ensures a high degree of purity: no albumin, no intact IgG, no Fc fragment, no residual Pepsin< 1.0% polymers / aggregates.

The remarkable safety assessed in clinical trials is due to the high purity level of FAVAFRICA.

Although there is no known transmission of any infectious agent through antivenoms, Sanofi Pasteur performs a pasteurisation step: 10 hours at 60°C, to wipe out the theoretical risk of emerging diseases transmission. Experience with human plasma products shows that pasteurisation can inactivate both enveloped and

non enveloped virus (HIV, HBV, HCV). Assessment of the viral safety of antivenom is a key point. Viral safety is controlled from the horses, scorpions and snakes breeding to the end of the manufacturing process:

- Venoms come from highly qualified European snake farm, they are freeze-dried and gamma irradiated venoms.

- Horses have documented, recorded and qualified origin. They undergo quarantine, vaccinations, antiparasitic treatments, routine blood chemistry and hematology tests, strict veterinarian inspections and follow up (no known contaminant agent from horse to human).

- Pepsin is controlled: sterile filtration, gamma irradiation.

- Viral inactivation controls are performed in adding known amounts of a range of model viruses (porcine parvovirus and poliovirus are resistant models of non enveloped viruses) at different steps of a laboratory scale manufacturing process and calculating the virus reduction factor after every step.

This table shows inactivation ratio of four different types of model virus at each manufacturing step and gives an estimation of the viral reduction level of the global manufacturing process:

<table>
<thead>
<tr>
<th></th>
<th>EIAV</th>
<th>SINDBIS</th>
<th>POLIOVIRUS SABIN 1</th>
<th>PORCINE PARVOVIRUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUGLOBULIN PRECIPITATION</td>
<td>≥ 2.9</td>
<td>≥ 3.5</td>
<td>3.5</td>
<td>> 2.8</td>
</tr>
<tr>
<td>PEPTIC HYDROLYSIS</td>
<td>≥ 3.5</td>
<td>≥ 3.9</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>HEAT TREATMENT (10 H AT + 60° C)</td>
<td>≥ 3.7</td>
<td>≥ 4.0</td>
<td>> 5</td>
<td>≥ 3.8</td>
</tr>
<tr>
<td>OVERALL VIRUS REDUCTION (LOG10)</td>
<td>≥ 10.1</td>
<td>≥ 11.4</td>
<td>> 8.5</td>
<td>> 6.6</td>
</tr>
</tbody>
</table>

(Complete inactivation corresponds to more than 4,68-6,25 log)

Antivenoms are both highly purified and safe.

Sanofi Pasteur antivenom process is performed in accordance with good manufacturing practices from the horses and venoms control to the finished product. The traceability of the whole production chain is ensured. The different manufacturing process steps and the final product are validated by preclinical safety (acute toxicity, complement consumption, hypotension test) and pharmacological (immunoreactivity, pharmacokinetic, immunoneutralization) studies, stability studies and viral validation studies.
12 SUMMARY OF AVAILABLE DATA ON COMPARATIVE COST AND COST EFFECTIVENESS

FAVAFRIQUE and FAVIREPT:
Average dosage: 3.7 vials, 54.3% of the patients had just 2 vials
Mean recovery time 1 day and 2 hours
Price: 100 Euros / vial of 10 ml (average price, informative)

SCORPIFAV:
10 to 20 mL
Price: 30 Euros / vial of 1 ml (average price, informative)

13 REGULATORY STATUS OF THE MEDICINE:

SNAKE ANTIVENOMS:

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>LOCAL TRADE NAME</th>
<th>HA STATUS</th>
<th>HA STATUS DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENIN</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>unknown</td>
</tr>
<tr>
<td>BURKINA FASO</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>25 March 1991</td>
</tr>
<tr>
<td>CAMEROON</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>6 June 1988</td>
</tr>
<tr>
<td>CENTRAL AFRICAN REPUBLIC</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>21 February 1995</td>
</tr>
<tr>
<td>CONGO</td>
<td>IPSER AFRICA</td>
<td>Approved originally</td>
<td>22 June 1995</td>
</tr>
<tr>
<td>GABON</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>6 May 1996</td>
</tr>
<tr>
<td>GUINEA</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>27 February 1989</td>
</tr>
<tr>
<td>IVORY COAST</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>1 January 1960</td>
</tr>
<tr>
<td>KENYA</td>
<td>PASTEUR IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>26 April 1985</td>
</tr>
<tr>
<td>MALI</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>31 December 1978</td>
</tr>
<tr>
<td>MAURITANIA</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>23 February 1989</td>
</tr>
<tr>
<td>NIGER</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>1 January 1995</td>
</tr>
<tr>
<td>Country</td>
<td>Local Trade Name</td>
<td>HA Status</td>
<td>Date</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Nigeria</td>
<td>PASTEUR IPSER AFRIQUE PURIFIED ANTISNAKE</td>
<td>Approved originally</td>
<td>12 November 1991</td>
</tr>
<tr>
<td>Togo</td>
<td>IPSER AFRIQUE PASTEUR</td>
<td>Approved originally</td>
<td>28 May 1990</td>
</tr>
<tr>
<td>Uganda</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>1 February 1997</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>IPSER AFRIQUE</td>
<td>Approved originally</td>
<td>24 November 1988</td>
</tr>
<tr>
<td>Benin</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>22 November 2000</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>SERUM ANTIVENIMEUX FAV-AFRIQUE PASTEUR</td>
<td>Approved originally</td>
<td>30 May 2001</td>
</tr>
<tr>
<td>Congo</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>4 January 2001</td>
</tr>
<tr>
<td>Gabon</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>28 March 2001</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>4 May 2004</td>
</tr>
<tr>
<td>Mali</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>23 November 2000</td>
</tr>
<tr>
<td>Senegal</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>18 July 2005</td>
</tr>
<tr>
<td>Togo</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>28 December 2000</td>
</tr>
<tr>
<td>Uganda</td>
<td>FAV-AFRIQUE</td>
<td>Approved originally</td>
<td>1 February 1997</td>
</tr>
<tr>
<td>Azerbaidjan</td>
<td>ANTIREPT PASTEUR</td>
<td>Approved originally</td>
<td>4 March 1995</td>
</tr>
<tr>
<td>Iraq</td>
<td>Not specified</td>
<td>Approved/licensed</td>
<td>Unknown</td>
</tr>
<tr>
<td>Turkey</td>
<td>S. ANTIREPT PASTEUR</td>
<td>Import license approved</td>
<td>12 May 1989</td>
</tr>
</tbody>
</table>

Scorpion Antivenoms:

<table>
<thead>
<tr>
<th>Country</th>
<th>Local Trade Name</th>
<th>HA Status</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iraq</td>
<td>Not specified</td>
<td>Approved/licensed</td>
<td>Unknown</td>
</tr>
<tr>
<td>Jordan</td>
<td>PASTEUR L.A.B.S.</td>
<td>Approved/licensed</td>
<td>23 December 1992</td>
</tr>
<tr>
<td>Turkey</td>
<td>Not specified</td>
<td>Approved/licensed</td>
<td>25 October 2002</td>
</tr>
</tbody>
</table>
Viper venom antiserum, European

protected from light, for 60 min. Using six mice for each mixture, inject into each mouse subcutaneously a dose of 0.5 ml. Observe the mice for 96 h. Mice that become paralysed may be killed.

The mixture that contains the largest volume of antitoxin that fails to protect the mice from paralysis contains 1 IU. This quantity is used to calculate the potency of the antitoxin in International Units per millilitre.

The test is not valid unless all the mice injected with mixtures containing 2.0 ml or less of the solution of the reference preparation show paralysis and all those injected with mixtures containing more do not.

01/2005:0145

VIPE R VENOM ANTISERUM, EUROPEAN

Immuno serum contra venena viperarum europaearum

DEFINITION

European viper venom antiserum is a preparation containing antitoxic globulins that have the power of neutralising the venom of one or more species of viper. The globulins are obtained by fractionation of the serum of animals that have been immunised against the venom or venoms.

IDENTIFICATION

It neutralises the venom of Vipera aspis, or Vipera aspis, or Vipera berus, or Vipera berus, or Vipera ursinii or the mixture of these venoms stated on the label, rendering them harmless to susceptible animals.

ASSAY

Each millilitre of the preparation to be examined contains sufficient antitoxic globulins to neutralise not less than 100 mouse LD₅₀ of Vipera aspis venom or Vipera aspis venom and not less than 50 mouse LD₅₀ of the venoms of other species of vipers.

The potency of European viper venom antiserum is determined by estimating the dose necessary to protect mice against the lethal effects of a fixed dose of venom of the relevant species of vipers.

Selection of test venoms. Use venoms which have the normal physicochemical, toxicological and immunological characteristics of venoms from the particular species of vipers. They are preferably freeze-dried and stored in the dark at 5 ± 3 °C.

Select a venom for use as a test venom by determining the LD₅₀ for mice, the observation period being 96 h.

Determination of the test dose of venom. Prepare graded dilutions of the reconstituted venom in a 9 g/l solution of sodium chloride R or other isotonic diluent in such a manner that the middle dilution contains in 0.25 ml the dose expected to be the LD₅₀. Dilute with an equal volume of the same diluent. Using at least four mice, each weighing 18 g to 20 g, for each dilution, inject 0.5 ml intravenously into each mouse. Observe the mice for 48 h and record the number of deaths. Calculate the LD₅₀ using the usual statistical methods.

Determination of the potency of the antiserum to be examined. Dilute the reconstituted test venom so that 0.25 ml contains the test dose of 5 LD₅₀ (test venom solution).

Prepare serial dilutions of the antiserum to be examined in a 9 g/l solution of sodium chloride R or other isotonic diluent, the dilution factor being 1.5 to 2.5. Use a sufficient number and range of dilutions to enable a mortality curve between 20 per cent and 80 per cent mortality to be established and to permit an estimation of the statistical variation.

Prepare mixtures such that 5 ml of each mixture contains 2.5 ml of one of the dilutions of the antiserum to be examined and 2.5 ml of the test venom solution. Allow the mixtures to stand in a water-bath at 37 °C for 30 min. Using not fewer than six mice, each weighing 18 g to 20 g, for each mixture, inject 0.5 ml intravenously into each mouse. Observe the mice for 48 h and record the number of deaths. Calculate the PDₕ₀ using the usual statistical methods. At the same time verify the number of LD₅₀ in the test dose of venom, using the method described above. Calculate the potency of the antiserum from the expression:

\[
\frac{(T_r - 1)}{PD_{50}}
\]

\(T_r\) = number of LD₅₀ in the test dose of venom.

In each mouse dose of the venom-antiserum mixture at the end point there is one LD₅₀ of venom remaining unneutralised by the antiserum and it is this unneutralised venom that is responsible for the deaths of 20 per cent of the mice inoculated with the mixture. The amount of venom neutralised by the antiserum is thus one LD₅₀ less than the total amount contained in each mouse dose. Therefore, as the potency of the antiserum is defined in terms of the number of LD₅₀ of venom that are neutralised, rather than the number of LD₅₀ in each mouse dose, the expression required in the calculation of potency is \(T_r - 1\) rather than \(T_r\).

Alternatively, the quantity of test venom in milligrams that is neutralised by 1 ml or some other defined volume of the antiserum to be examined may be calculated.

LABELLING

The label states the venom or venoms against which the antiserum is effective.

Warning: Because of the allergenic properties of viper venom, inhalation of venom dust should be avoided by suitable precautions.