CD4 Response to ART in Previously Untreated Adults with HIV Infection in Africa: the DART Trial

P Munderi1, C Kityo Mutuluza2, A Reid3, AS Walker4, on behalf of the DART Trial

1 MRC/UVRI Programme on AIDS, Entebbe, Uganda; 2 Joint Clinical Research Centre, Kampala, Uganda; 3 University of Zimbabwe, Harare, Zimbabwe; 4 MRC Clinical Trials Unit, London, UK

ABSTRACT (updated)

Background: Although access to ART is increasing in developing countries, there are few data on the long-term CD4 response to ART in previously untreated adults in Africa. The DART (D4 Response to ART in Previously Untreated Adults with HIV Infection in Africa) trial aims to evaluate CD4 cell counts and overall CD4 response in adults with baseline CD4 counts of <200 cells/mm³ on ART.

Methods: 3000 symptomatic ART-naive adults from 3 sites (2 Uganda, 1 Zimbabwe) with CD4 <200 cells/mm³ will receive 3-drug ART and are to be followed for up to 5 years. We used logistic regression to assess the influence of baseline demographic and biological variables on the probability of having at least one CD4 increase of 100 cells/mm³ or more at 24 weeks. We used logistic regression to assess the influence of baseline demographic and biological variables on the probability of having at least one CD4 increase of 100 cells/mm³ or more at 24 weeks. We used logistic regression to assess the influence of baseline demographic and biological variables on the probability of having at least one CD4 increase of 100 cells/mm³ or more at 24 weeks.

Results: Of 1157 patients who reached 24 weeks, 85% had CD4 >200 cells/mm³ (Figure 1). The median CD4 increase was 114 cells/mm³ (IQR 68-209) and the mean CD4 increase was 119 cells/mm³ (95% CI 114-124). CD4 increases were observed in 92% of patients, and were significantly greater in patients with younger ages, lower total lymphocytes, and lower serum albumin (Figure 2). There was a significant association between baseline CD4 and the probability of achieving CD4 ≥200 cells/mm³ at 24 weeks (Figure 3).

Conclusion: CD4 increases observed in the DART trial are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa.

OVERVIEW OF PATIENTS ENROLLED IN DART

1919 patients have been randomised to 7 January 2004. Patients with CD4 >200 cells/mm³ at baseline were excluded. The median age was 37 years (range 18-59) and 71% were male. 20% had symptoms of HIV infection, indicating that the trial is recruiting patients with advanced HIV disease.

Factors associated with CD4 at randomisation in DART were assessed on the total population randomised to 7 January 2004 (n=1919) using normal regression analysis. The effects of demographic (age and sex), WHO disease stage, weight, and haematology (haemoglobin, white cell count, neutrophil count, total lymphocyte count, and CD4/CD8 ratio) were evaluated. The baseline haematology parameters were assessed in 96% of patients. The baseline CD4 cell count was 76 cells/mm³ (IQR 29-136, range 0-1260) and the mean CD4 cell count was 76 cells/mm³ (95% CI 74-78). The median CD4 cell count was 76 cells/mm³ (IQR 29-136, range 0-1260) and the mean CD4 cell count was 76 cells/mm³ (95% CI 74-78). The median CD4 cell count was 76 cells/mm³ (IQR 29-136, range 0-1260) and the mean CD4 cell count was 76 cells/mm³ (95% CI 74-78). The median CD4 cell count was 76 cells/mm³ (IQR 29-136, range 0-1260) and the mean CD4 cell count was 76 cells/mm³ (95% CI 74-78).

METHODS

Randomised allocation to clinical monitoring only versus laboratory plus clinical monitoring was not considered in any analysis.

Factors associated with CD4 at randomisation in DART were assessed on the total population randomised to 7 January 2004 (n=1919) using normal regression analysis. The effects of demographic (age and sex), WHO disease stage, weight, and haematology (haemoglobin, white cell count, neutrophil count, total lymphocyte count, and CD4/CD8 ratio) were evaluated. The baseline haematology parameters were assessed in 96% of patients. The baseline CD4 cell count was 76 cells/mm³ (IQR 29-136, range 0-1260) and the mean CD4 cell count was 76 cells/mm³ (95% CI 74-78).

RESULTS

1919 patients have been randomised to 7 January 2004. Patients with CD4 >200 cells/mm³ at baseline were excluded. The median age was 37 years (range 18-59) and 71% were male. 20% had symptoms of HIV infection, indicating that the trial is recruiting patients with advanced HIV disease.

Factors associated with CD4 at randomisation in DART were assessed on the total population randomised to 7 January 2004 (n=1919) using normal regression analysis. The effects of demographic (age and sex), WHO disease stage, weight, and haematology (haemoglobin, white cell count, neutrophil count, total lymphocyte count, and CD4/CD8 ratio) were evaluated. The baseline haematology parameters were assessed in 96% of patients. The baseline CD4 cell count was 76 cells/mm³ (IQR 29-136, range 0-1260) and the mean CD4 cell count was 76 cells/mm³ (95% CI 74-78).

CONCLUSION

CD4 increases observed in the DART trial are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa. The CD4 increases observed are in line with those obtained in other studies, suggesting that ART improves CD4 cell counts in previously untreated adults in Africa.
ABSTRACT (updated)

Background: Although access to ART is increasing in developing countries, there are few data on the predictors of immunological response in previously untreated adults in such settings.

Methods: DART (Development of Anti-Retroviral Therapy in Africa) is an open label randomised trial comparing two therapeutic approaches relevant to resource poor settings: clinical monitoring only versus laboratory plus clinical monitoring, and structured treatment interruptions versus continuous therapy in patients who achieve CD4 cell counts >200 cells/mm³ after 24 or 48 weeks of continuous ART. 3000 symptomatic ART-naive adults from 3 sites (2 Uganda, 1 Zimbabwe) with CD4 <200 cells/mm³ will receive 3-drug ART and are to be followed for up to 5 years. We used logistic regression models to investigate the association between CD4 responses (increase ≥100 cells/mm³, or to ≥200 cells/mm³) 24 weeks after ART initiation and sex, age, disease stage, weight, and CD4 count at ART initiation. This was a global analysis, not broken down by randomised group.

Results: To 7 January 2004, 1919 adults have been randomised (64% women; median age 37 years (IQR 32-42); 27% WHO Stage 4, median CD4 82 (35% <50 cells/mm³)). All received ZDV/3TC/TDF as first line ART. Only 46 (3%) patients have thus far switched their treatment (all switching ZDV to d4T for toxicity). As expected, baseline CD4 was significantly lower in patients with later stage disease, and in men compared to women (both p<0.001). 474 patients have reached 24 weeks, of whom 154, 121, 110 and 89 initiated ART with CD4 0-49, 50-99, 100-149, and 150-199 cells/mm³, respectively. 210 (44%) adults have increased CD4 by at least 100 cells/mm³ at 24 weeks (median increase 84, IQR 42-142) and 192 (42%) have achieved a CD4 of ≥200 cells/mm³. Among the 154 patients initiating ART with CD4 <50 cells/mm³, 63 (41%) had CD4 increases >100 cells/mm³ and 19 (12%) had CD4 ≥200 by week 24; among those with CD4 50-199 at ART initiation (n=320), CD4 increased by ≥100 cells in 147 (46%) and 173 (54%) had CD4 ≥200 by week 24. We found no evidence to suggest that the chance of CD4 increases ≥100 cells/mm³ at 24 weeks were significantly influenced by pre-ART CD4 (OR=1.12, p=0.16), or the other factors described above.

Conclusion: Achieving CD4 increases of ≥100 cells/mm³ after 24 weeks on ART in Africa appears to occur regardless of pre-ART factors including low baseline CD4. The CD4 increases observed are comparable with those obtained in patients with low CD4 counts in industrialised countries.
OVERVIEW of PATIENTS ENROLLED in DART

1919 patients have been randomised to 7 January 2004
★ 64% are women
★ median age is 37 years - 14% under 30 years and 15% over 45 years
★ 27% have been enrolled from the MRC Program on AIDS/Uganda Virus Research Institute (Uganda); 31% from the Joint Clinical Research Centre (Uganda); 12% from the Academic Alliance (Uganda); and 30% from the University of Zimbabwe (Zimbabwe)
★ 98% acquired HIV through sex between men and women
★ 45% were first diagnosed HIV positive when screened for entry to DART
 ➢ those with a positive HIV test before DART screening had been diagnosed for a median of 1.1 years (IQR 0.4 to 3.9 years)
★ 27% were WHO stage 4, 55% WHO stage 3 and 18% WHO stage 2
★ 43 women (2% of total, 3% of women) had previously received ART for prevention of mother-to-child transmission
 ➢ single dose nevirapine in 86% of cases
★ median haemoglobin was 11.5 mg/dl (IQR 10.3 to 12.7: range 5.8 to 18.5)
★ median ALT was 26 IU/l (IQR 18 to 37: range 3 to 193)
★ all patients started ART with ZDV/3TC/TDF
 ➢ 46 patients (3%) have substituted ZDV for D4T for toxicity

METHODS

Randomised allocation to clinical monitoring only versus laboratory plus clinical monitoring was not considered in any analysis.

Factors associated with CD4 at randomisation in DART were assessed on the total population randomised to 7 January 2004 (n=1919) using normal regression and adjusting for DART clinical site. The effects of demographics (age and sex), WHO disease stage, weight, and haematology (haemoglobin, white cell count, neutrophils, total lymphocytes, platelets) and biochemistry (urea, creatinine, bilirubin, ALT) at baseline were investigated, but only those with p<0.01 on multivariable analyses are reported, in view of the large number of observations.
CD4 counts from scheduled tests at 12 and 24 weeks after initiating therapy were considered in patients with available results. Multilevel models with random intercept, and slope before and after 12 weeks were used to assess the relationship between CD4 at randomisation and subsequent changes.

We then focussed on 24 week response, which has usually been considered in studies in industrialised countries, considering the proportion of patients achieving increases in absolute CD4 count of 0, 50, 100, 150 and 200 cells/mm3 or more; and achieving absolute CD4 counts above thresholds of 200, 250, 300, 350 and 400 cells/mm3. Factors associated with a CD4 increase of 100 cells/mm3 or more at 24 weeks were then identified using logistic regression. All

CD4 at RANDOMISATION in DART

- Median CD4 at randomisation was 82 (IQR 29 to 136, range 0-199)

![Bar Chart](image)

CD4 at randomisation was lower in patients

- who were **male** (by, on average, 18 cells/mm3 [95% CI 12-24] p<0.001)
- who had **WHO stage 3 or 4** disease (by, on average, 18 and 34 cells/mm3 [95% CI 25-42 and 30-52] respectively compared to WHO stage 2, p<0.001)
- who were **younger** (by, on average, 5 cells/mm3 for every 10 years younger [95% CI 1-9] p=0.009)

> this probably represents a complex relationship between duration of infection and survival to DART enrolment
Whilst some haematology and biochemistry counts did provide additional predictive information, effects were small in magnitude. In particular, CD4 at randomisation was lower in patients

- who had **lower total lymphocytes** (by, on average, 38 cells/mm3 for every $1\times10^9/l$ lower [95% CI 34-41] $p<0.001$)
- who had **higher ALT** (by, on average, 2 cells/mm3 for every 10 IU/l higher [95% CI 1-4] $p<0.001$)
OVERALL CD4 INCREASES IN DART

★ Median CD4 increase at 12 and 24 weeks was 70 cells/mm³ (IQR 29 to 123) and 84 cells/mm³ (IQR 42 to 142) respectively (Figure 1)
 – mean increase was 6.7 cells/mm³ per week to week 12, then 1.1 cells/mm³ per week from week 12 to week 24
 – CD4 increases in these 2 periods differed significantly (p<0.0001)

★ 402/1157 (35%) had achieved a CD4 count of 200 cells/mm³ or higher
 at 12 weeks; and 192/474 (41%) at 24 weeks (Figure 2)

Figure 1: CD4 counts through 24 weeks in DART (boxplot)
CD4 RESPONSE at 24 WEEKS

- CD4 at randomisation was not significantly associated with short-term CD4 response, defined as an increase of 100 cells/mm³ or more at 24 weeks
 - OR=1.12 per 50 cells/mm³ higher baseline CD4 [95% CI 0.96-1.31, p=0.16] (Figure 4)
 - therefore, by week 24 most patients appear to be able to achieve similar CD4 increases regardless of baseline

- CD4 at randomisation was strongly associated with achieving threshold levels at 24 weeks, because smaller CD4 increases are needed to achieve these thresholds for patient with 150-199 cells/mm³ at randomisation, compared with patients with 0-49 cells/mm³ at randomisation
Figure 2: Proportion of patients reaching CD4 cell count levels at 24 weeks

Note: an increase to the 200 cells/mm³ level is an increase of less than 50 cells for a patient randomised in the 150-199 group, compared with more than 150 cells for a patient randomised in the 0-49 group.

<table>
<thead>
<tr>
<th>Baseline</th>
<th>CD4 0-49</th>
<th>50-99</th>
<th>100-149</th>
<th>150-199</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>1%</td>
<td>3%</td>
<td>7%</td>
<td>9%</td>
</tr>
<tr>
<td>%</td>
<td>50%</td>
<td>55%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td>%</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Figure 3: Proportion of patients with absolute CD4 increases from randomisation to 24 weeks

<table>
<thead>
<tr>
<th>Baseline CD4</th>
<th>Absolute increase in CD4 (cells/mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>0.08</td>
</tr>
<tr>
<td>50-99</td>
<td>0.09</td>
</tr>
<tr>
<td>100-149</td>
<td>0.10</td>
</tr>
<tr>
<td>150-199</td>
<td>0.11</td>
</tr>
</tbody>
</table>
OTHER PREDICTORS of CD4 RESPONSE at 24 WEEKS

★ in univariate analysis, only baseline haemoglobin was associated with the chance of achieving a CD4 increase of 100 cells/mm³ or more at 24 weeks (Figure 4)

➢ OR=0.87 per 1mg/dl higher baseline CD4 [95% CI 0.79-0.97, p=0.01]

★ there was no additional effect of CD4 (p=0.2), or any other factor, after adjusting for baseline haemoglobin

SUMMARY

➢ We have not been able to identify important predictors of achieving CD4 increases of 100 cells or more after 24 weeks on triple-drug ART in Africa

➢ In particular, CD4 increases at 24 weeks appear to occur regardless of low baseline CD4: however, preliminary data suggest early increases (to 12 weeks) may be greater in those with higher pre-ART CD4 (data not shown)

➢ The CD4 increases observed are in line with those obtained in patients with low CD4 counts in industrialised countries

➢ Given the low CD4 counts at ART initiation, a substantial proportion of patients still have CD4 counts below 200 cells/mm³ at 24 weeks, leaving them at risk of new WHO events

➢ We will continue to monitor short-term response, as the remaining 1000 patients are enrolled and followed

➢ Follow-up in DART is planned to continue until the end of 2007
Figure 4: Predictors of 24 week CD4+ response (increase of 100 cells/mm³ or greater)

- Sex (female: male) p = 0.26
- Age (per 10 years older) p = 0.54
- WHO 3 (versus WHO 2) p = 0.41
- WHO 4 (versus WHO 2) p = 0.99
- CD4 (per 50 cells higher) p = 0.16
- CD8 (per 50 cells higher) p = 0.45
- Haemoglobin (per 1mg/dl higher) p = 0.01
- Lymphocytes (per 1x10⁹/l higher) p = 0.69
- Neutrophils (per 1x10⁹/l higher) p = 0.71
- White cell count (per 1x10⁹/l higher) p = 0.77
- Platelets (per 50x10⁹/ l higher) p = 0.73
- Urea (per 1mg/dl higher) p = 0.81
- Creatinine (per 1mg/dl higher) p = 0.80
- Bilirubin (per 1 mg/dl higher) p = 0.49
- ALT (per 10 IU/l higher) p = 0.22
- Weight (per 10 kg higher) p = 0.50
- Timing (per week later) p = 0.54

OR (pointwise 95% confidence interval)
COLLABORATORS and ACKNOWLEDGEMENTS

We thank all the patients and staff from all the centres participating in the DART trial.

Trial Steering Committee: I Weller (Chair), A Babiker, S Bahendeka, M Bassett, A Chogo Wapakhabulo, J Derbyshire, B Gazzard, C Gilks, H Grosskurth, J Hakim, A Latif, E Loeliger (observer), M Imperiale (observer), O Mugurungi, P Muyenyi, P Naidoo (observer), M Palmer (observer), J Rooney (observer), J-M Steens (observer).

MRC Programme on AIDS/Uganda Virus Research Institute, Entebbe, Uganda: H Grosskurth, P Munderi, K Wangati, D Kajungu, B Amuron, D Nsibambi; R Kasire, E Zalwango, M Nakazibwe, B Kikaire, G Nassuna, R Massa, K Fadhira, M Namayale, A Zalwango, L Generous, P Khauka, N Rutikarayo, W Nakahima, J Nakiyengye, P Hughes.

The AIDS Support Organisation (TASO), Uganda: A Coutinho, B Etukoit.

Academic Alliance, Mulago Hospital, Uganda: E Katabira, J Oyugi, A Ronald, A Kambungu, J Martin, R Nalumanya, R Nairubi, E Bulume, M Teopista, C Twijukye, F Semata.

Imperial College, London, UK: C Gilks, L Colquhoun, C Puddephatt, K Boocock.

Funding: DART is funded by the UK Medical Research Council, the UK Department for International Development (DFID), and Rockefeller Foundation. First-line drugs are provided by GlaxoSmithKline, Gilead and Boehringer-Ingelheim.